Automated Client-side Monitoring for Web Applications

Shauvik Roy Choudhary and Alessandro Orso
College of Computing — Georgia Institute of Technology
{shauvik, orso}@cc .gatech.edu

Abstract

Web applications have become very popular today in a
variety of domains. Given the varied nature of client-side
environments and browser configurations, it is difficult to
completely test or debug the client-side code of web appli-
cations in-house. There are tools that facilitate functional
testing on various browsers, but they cannot mimic all of the
possible client-side environments. In modern web browsers,
the client-side code can interact with numerous web ser-
vices to get more data and even to update itself, which can
in turn affect the behavior of the client in unforeseen ways.
In these situations, monitoring the client-side code allows
for gathering valuable runtime information about its behav-
ior. In this paper, we propose a technique for monitoring
and detecting failures in client-side code. We also present a
preliminary evaluation of the technique where we discuss its
efficiency, effectiveness, and possible application scenarios.

1 Introduction

With the advent of new web application technologies,
many applications today are being made for the web. These
web applications serve a variety of client platforms that
range from desktop computers to embedded devices such as
mobile phones. On each device, the web application’s pages
are rendered by a number of user agents, including fully
featured browsers, embedded applications (e.g., flash), and
custom mobile UI agents with limited functionality. Given
this varied nature of user agents, it is often difficult for de-
velopers to ensure that their code runs correctly and effi-
ciently in all possible contexts.

Typically, developers test their applications on the most
popular browsers before shipping their code. This kind
of testing is useful, but necessarily limited to the few de-
ployment scenarios considered; after deployment, when the
web application runs on the user platforms, incompatibili-
ties with the environment may result in unforeseen behav-
iors and, ultimately, application crashes. In these cases, de-
velopers can easily get information on the server-side appli-
cation (e.g., from logs), but they typically have little infor-
mation about the remotely-running client side, which is the
part actually misbehaving.

Existing techniques allows for collecting some client-
side runtime information, such as the URL of the page
where an error occurred and error messages. This informa-
tion, however, provides only limited support for debugging
problems occurring in the client-side code. To address this
limitation, we propose a novel technique for remote mon-
itoring of client-side applications. Our technique transpar-
ently injects a client agent into the web application’s code
and uses a server-side component to collect a variety of
monitoring data from the agent and to control it. The server-
side component can analyze the collected data and take cor-
rective actions through the agent. Our technique is efficient
and flexible, in that it can support a variety of monitoring
tasks without imposing too much overhead on the web ap-
plication being monitored. In the rest of the paper, we de-
scribe the technique and present a preliminary evaluation of
its efficiency and usefulness.

The main contributions of this paper are: (1) an approach
for monitoring client-side code in web applications; (2) a
prototype implementation and preliminary evaluation of the
approach; and (3) a discussion of some possible application
scenarios for our approach.

2 Motivating Example

In this section, we introduce a motivating example that
we use to illustrate a possible issue with a web application
running in different environments and how our technique
could address it. (Due to space limitations, in the discussion
we assume a basic knowledge of web technologies.) Con-
sider the following code snippet, from a web application,
that renders a client-side UI element based on the value of
a cookie named status.

1. if (getCookie (’status’) == "") {

2. setCookie (’status’,"display’);

3. reloadPage () ;

4. } else if(getCookie(’status’)=="display’) {
5 updateWithAjaxContent (url, divId);

6.}
If the cookie is not set, the code sets its value to display
and reloads the page. Otherwise, if itis setto display, the
code calls function updateWithAjaxContent. This
function makes an Ajax request to the url passed as a pa-
rameter and populates the data received into the HTML di-
vision associated with identifier divId, also passed as a

parameter. Consider now a case where cookie status has
been set by some external entity in the environment (e.g., a
third party client or a user-level script) to a different value
prior to the execution of the above code snippet. In such
a case, the code would not perform any action, which may
lead to an unexpected behavior if the programmer did not
anticipate this situation.

Note that this is just a possible instance of a more general
problem that involves other configurations and environment
variables besides cookies. Such variables are in a global
space within the browser, can be set in a programmatic way
(e.g., by a browser plug-in) or interactively (e.g., by show-
ing a dialog box to the user), and can affect the behavior
of web applications running in the browser. Therefore, this
and similar problems are not uncommon in today’s increas-
ingly feature-rich client environments and are hard to inves-
tigate and debug without some access to runtime informa-
tion about the client-side application.

3 Our Technique and Tool

As we mentioned in the Introduction, our technique is
based on using a proxy to transparently inject a client agent
into the code of a web application to be monitored. At run-
time, the agent can collect a variety of runtime information
and send it (all or in part) to a server-side component.' The
server-side component can then analyze the collected data
and possibly take corrective actions through the agent.

Figure 1 provides a high-level view of our technique
and tool. The client side simply consists of a Javascript-
enabled web browser. On the server side, our technique uses
a rewriting reverse proxy that performs three main tasks.
When a request is sent from the client browser, the proxy
simply directs it to the appropriate web server. When a re-
sponse is received from the web server, the proxy instru-
ments the code in the page being sent to the client browser
to add the client-side agent (CSA). Finally, when monitor-
ing data is received from the agent, the proxy directs it to
the Command and Control (CrC) server. In the following
sections, we provide more details about the technique and
our prototype implementation.

3.1 Rewriting Reverse Proxy

Reverse proxies are used mainly for load balancing and
caching server data. They can also be leveraged to do addi-
tional tasks, such as SSL encryption and data compression,
and to provide security to web servers by shielding them
from direct Internet traffic. For our prototype, we used an
open-source non-caching proxy server called TINYPROXY
The proxy
server was configured to route HTTP requests that contain
monitoring data (identified using a URL regular-expression)

(https://www.banu.com/tinyproxy/).

'We are aware of possible privacy issues with the approach, but at this
stage of the research we are more concerned with its feasibility.

‘Web application data
(A
WEB SERVER

REWRITING
REVERSE PROXY

W= 1

CLIENT BROWSER

Monitoring data

COMMAND AND CONTROL
SERVER

Figure 1. High-level view of the technique.

to the CnC server, while routing all other traffic to the ap-
propriate web application running on the web server.

We also extended TINYPROXY with rewriting capabili-
ties as follows. When a request is made to a web applica-
tion, the proxy rewrites the server response so as to trans-
parently inject a reference to a CSA located on the CnC
server. In this way, the CnC server can get access to all of
the resources on the client browser that were loaded by the
web application because the CSA is loaded from the same
domain (and can thus bypass the browser’s cross-domain
restrictions).

3.2 Client-side Agent

A CSA is a Javascript program that runs in the user
browser. Its main purpose is to connect to the CnC server
to provide data and receive commands. Since HTTP does
not support push communication, we have implemented this
client agent using a polling approach. The initial time inter-
val for the polling is defined in the agent’s code, but the CnC
server can change such interval using a remote command.
In current browsers, the polling operation is performed be-
tween normal executions of other client-side scripts. There-
fore, if a CSA is performing a computation-intensive oper-
ation, it may slow down the client-side code of the web ap-
plication that is being monitored. This problem, if present,
could be addressed by leveraging Web Worker threads,
which are a part of the upcoming HTMLS standard [5]. Us-
ing this feature, a CSA could be started as an independent
worker thread that operates in parallel with the other client-
side code.

In a practical scenario where there are multiple CSAs in-
volved, it is necessary to identify the client agents, so as to
be able to keep track of the commands sent to them and their
responses within a web session. To achieve this goal, our
current implementation creates a cookie named agent Id,
sets it to a randomly-generated alphanumeric ID, and as-
sociates the ID with a specific agent and session. An al-
ternative approach would be to use the session id cookies
set by some web servers (e.g., PHPSESSID for PHP and
JSESSIONID for Tomcat).

<commands>
<cmd>
<id>8de9</id>
<name>ALERT</name>
<param>Hello World!</param>
</cmd>
<cmd>
<id>3bsd</id>
9. <name>DUMP</name>
10. <param>myObj</param>
11. <param>myArray</param>
12. </cmd>
13. </commands>

W oUW WN

Figure 2. Example of command sent from the
CnC server to a CSA.

. <responses>
<resp>
<id>8de9</id>
<status>1</status>
</resp>
<resp>
<id>3bsd</id>
<message>{"aString":"Howdy",
"aInteger":10,
"aBoolean":true}</message>
9. <message>[1l, "foo", "web"]</message>
10. </resp>
11. </responses>

Figure 3. Example of response sent from a
CSA to the CnC server for the commands in
Figure 2.

W oUW N

3.3 CnC Server

The CnC server has prior knowledge of the client-side
program as it has access to the AST of the Javascript source.
When a CSA first loads, the CnC server creates an identifier
for it, as described in the previous section, and starts queue-
ing commands for the CSA. The CSA fetches these com-
mands and sends back a response. To illustrate, figures 2
and 3 provide some simple examples of commands and re-
sponses. Multiple commands can be sent to an agent at a
time by wrapping each command in a <cmd> tag. In the
example, the server sends two commands. The first com-
mand results in displaying an HTML alert box to the user
with the specified message. On success, the tag success
of the corresponding response is set to one. In the second
command, the server requests a dump of the values of ob-
ject myOb 7 and array myArray, and the CSA returns the
respective encoded values back to the server in its response.

4 Preliminary Evaluation

The goal of our evaluation is to measure the practicality
of our approach in terms of feasibility and overhead im-
posed on the user. To this end, we used our prototype tool
on a set of web applications.

Table 1 lists the 10 web applications that we used for our
evaluation. Interactive Test, Number Guess, and Chat Client
are sample rich-client applications distributed with the
Echo2 Ajax framework (http://echo.nextapp.com/

Table 1. Instrumentation overhead.

Avg. Download Time (us)

Subject Normal [Instrumented
Interactive Test | 30,258 30,922
Number Guess 25,625 25,731
Chat Client 29,327 30,782
Mail 27,950 29,018
Showcase 29,318 29,909
Joomla 274,122 280,845
Drupal 171,109 172,730
Wordpress 242,704 250,782
iGoogle 71,461 74,991
Amazon.com 808,693 810,541

site/echo2); Mail and Showcase are demo applications
distributed with Google Web Toolkit (GWT — http://
code.google.com/webtoolkit/); Joomla, Drupal, and
Wordpress are open source content-management systems
and blogging packages; finally, iGoogle and Amazon.com
are commercial web applications. All of our subject ap-
plications are characterized by having a large proportion of
their code on the client side. The Echo 2 applications are
Ajax-based applications that contain a considerable amount
of client-side code. The GWT applications are written in
Java and then compiled to Javascript and HTML. Joomla,
Drupal and Wordpress use large client-side libraries to ren-
der their UI elements in the browser. iGoogle and Ama-
zon.com have a great deal of client-side widgets and valida-
tion code written in Javascript.

To measure the efficiency of the proxy’s transparent in-
jection, we randomly chose one page in each of the sub-
ject applications and measured the time necessary to in-
strument it. To gather this information, we collected and
compared the loading time for the page with and without
injection. To account for transitory effects, we loaded each
page 100 times and averaged the measurements. The results
are shown in Table 1. As the table shows, the proxy took
between 0.1 and 8 milliseconds to inject the agent, which
is negligible in the overall loading process. Moreover, the
proxy we chose was not designed to be a rewriting proxy
and could be further optimized (e.g., by instrumenting only
the main page of an application instead of all server-side
resources associated with content type type/html).

We also measured the overhead imposed by a CSA that
iterates through all window objects and inspects all global
elements in the window. Table 2 shows the results of this
part of the evaluation in terms of number of objects encoun-
tered (divided in objects from the same and different do-
mains) and time taken by the agent to iterate through the
objects. (Note that, as we discussed in Section 3.1, our
rewriting proxy allows both the CnC server and the web
server to appear as a single source to the browser, thus over-
coming cross-domain restrictions.) As the results show, for

Table 2. CSA Performance.

Same Domain Cross Domain

Subject #Obj. | Time (ms) | #Obj. | Time (ms)
Interactive Test 147 2 146 2
Number Guess 144 3 144 2
Chat Client 147 2 146 2
Mail 1,286 9 1,286 10
Showcase 4,490 30 4,490 31
Joomla 229 3 229 3
Drupal 118 1 118 2
Wordpress 176 3 176 3
iGoogle 618 6 602 5
Amazon.com 314 4 303 3

the cases considered the agent was able to monitor the ob-
jects’ state and provide information to the CnC server fairly
efficiently. These results provide initial evidence of the fea-
sibility of the approach.

5 Application Scenarios

In this section, we present some possible application sce-
narios for our technique. These are just examples, as our
approach is generic enough to support many other usages.

5.1 Remote Error Detection & Debugging

Javascript errors can be caught by surrounding the
Javascript code with a try-catch block or by associating the
window.onerror event to a utility function. The CnC
server could check if error handling code is present and, if
so, redirect the handler to a CSA that performs some op-
eration, such as trying to recover from the error or logging
relevant data, before calling the original error-handling rou-
tine.

5.2 Metrics Collection

A CSA can be helpful in collecting and reporting a num-
ber of dynamic metrics on the client side, such as code cov-
erage and client-activity profiles. Periodic collection and re-
porting of metrics to the CnC server would allow for mon-
itoring client-side execution. Moreover, the server could
dynamically instruct the CSA to collect more detailed in-
formation for relevant parts of the code (e.g., hot spots).

5.3 Memory Profiling

Using a CSA, the CnC server could get the count of live
variables, objects, and arrays in the client-side code and use
it to calculate the total memory usage at specific points in
time. A CSA could also count the number of instances of
one type of object or the length of the complete DOM tree.

5.4 Security of Web Services

There are many issues related to enforcing service-level
agreements within web services [3]. In particular, moni-
toring web services requires end-to-end connectivity. Our

approach could help in the case of web services that are
accessed through client-side Javascript applications. For
instance, our technique could dynamically check for inter-
face mismatches [4] or monitor scripts loaded from external
sources that might lead to web-security attacks.

6 Related Work

The existing approach most closely related to ours is
AjaxScope [1, 2]. AjaxScope identifies Javascript code in
web pages at runtime and performs dynamic source-level
instrumentation to distribute test and analysis tasks among
all users of a web application. Although it shares some tech-
nical similarities with our CSA-based technique, AjaxS-
cope has a different goal. Most importantly, AjaxScope
does not allow for providing commands to the instrumented
Javascript, which limits the applicability of the approach.

7 Conclusion

In this paper we presented our approach for automated
monitoring of client-side code, a proof-of-concept proto-
type tool that implements our approach, and an initial em-
pirical evaluation. Our results, although preliminary, pro-
vide initial evidence of the feasibility of the approach.

In future work, we will perform a more thorough empir-
ical evaluation. We will also study ways to optimize the ap-
proach by leveraging characteristics of the new HTML stan-
dard, such as Web Worker threads. In general, we believe
that advances in web technologies will have a dual effect:
on the one hand, they will introduce additional complexity
on the client-side execution and call for more monitoring
and control over it; on the other hand, they will provide fea-
tures and capabilities that help support such monitoring and
control through approaches such as the one we propose.

References

[1] E. Kiciman and B. Livshits. AjaxScope: A Platform for
Remotely Monitoring the Client-side Behavior of Web 2.0
Applications. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles, Oct. 2007.

[2] E. Kiciman and Helen J. Wang. Live Monitoring: Using
Adaptive Instrumentation and Analysis to Debug and Main-
tainWeb Applications. In Proceedings of the 11th Workshop
on Hot Topics in Operating Systems, May 2007.

[3] Heiko Ludwig Web Services QoS: External SLA and In-
ternal Policies Or: How do we deliver what we promise?
In Proceedings of the 4th International Conference on Web
Information Systems Engineering Workshops, WISEW’03

[4] W. G. Halfond and A. Orso. Automated Identification of In-
terface Mismatches in Web Applications. In Proceedings of
the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, Nov. 2008.

[5] Tan Hickson, Google. Web Workers — Draft Rec-
ommendation http://www.whatwg.org/specs/
web-workers/current-work/, January 2009.

