
WEBDIFF: Automated Identification of
Cross-browser Issues in Web Applications

Shauvik Roy Choudhary, Husayn Versee, Alessandro Orso
Georgia Institute of Technology

shauvik@cc.gatech.edu, hversee3@gatech.edu, orso@cc.gatech.edu

Abstract—Cross-browser (and cross-platform) issues are preva-

lent in modern web based applications and range from minor

cosmetic bugs to critical functional failures. In spite of the rele-

vance of these issues, cross-browser testing of web applications is

still a fairly immature field. Existing tools and techniques require

a considerable manual effort to identify such issues and provide

limited support to developers for fixing the underlying cause of the

issues. To address these limitations, we propose a technique for

automatically detecting cross-browser issues and assisting their

diagnosis. Our approach is dynamic and is based on differential

testing. It compares the behavior of a web application in different

web browsers, identifies differences in behavior as potential issues,

and reports them to the developers. Given a page to be analyzed,

the comparison is performed by combining a structural analysis

of the information in the page’s DOM and a visual analysis

of the page’s appearance, obtained through screen captures. To

evaluate the usefulness of our approach, we implemented our

technique in a tool, called WEBDIFF, and used WEBDIFF to

identify cross-browser issues in nine real web applications. The

results of our evaluation are promising, in that WEBDIFF was

able to automatically identify 121 issues in the applications, while

generating only 21 false positives. Moreover, many of these false

positives are due to limitations in the current implementation of

WEBDIFF and could be eliminated with suitable engineering.

I. INTRODUCTION

Web applications are increasingly widespread these days,
and we use them daily both for work and personal activi-
ties, such as shopping, banking, networking, and email. As
the popularity of web applications has increased, they have
also become more complex and richer on the client side. A
modern web application typically consists of several client-side
components in the form of scripts and resources that are linked
from the web page and execute in a web browser. Currently,
users have the option to use several web browsers, which
introduces problems for web-application developers; web ap-
plications are expected to behave consistently across all of the
popular browsers (and across platforms). However, because the
standards for client-side technology are still evolving, there is
a great deal of inconsistency in how different web browsers
behave. These inconsistencies lead to what we call cross-

browser issues–differences in the way a web page looks and
behaves in different browsers.

Cross-browser issues range from minor cosmetic problems
to critical failures that involve the applications’ functionality. In
both cases, the issue can result in the inability of the users to
access one or more services provided by a web application.
Current browser usage statistics report that there are seven
popular web browsers that are commonly used across various

platforms [1]. Maintaining compliance across these browsers
is a crucial task for developers. If a feature is broken on
one of these top browsers, it could result in (part of) the
application malfunctioning or being inaccessible for a class
of users. Moreover, these issues occur on the client side (i.e.,

in the browser), which is out of the developer’s direct control.
It is therefore often the case that it takes a long time for such
issues to get reported and fixed. For this reason, there is much
interest in identifying cross-browser issues during in-house
testing, before the software is released [2], and companies try
to limit the number of browsers they support [3].

Currently, detecting cross-browser issues requires manual
inspection of the web pages and their behaviors when they
are rendered in different browsers. Existing commercial tools
(e.g., [4], [5]) can assist such manual testing by presenting
the differential rendering side by side, but they still require
a considerable effort from the developer and are limited in
functionality. The few research tools that target this problem
(e.g., [6], [7]) are also limited by the fact of requiring a
considerable amount of manual work, as we further discuss
in Section VII.

To address the limitations of existing techniques, we present
a novel technique that can (1) detect cross-browser issues au-
tomatically, (2) target both visual and functional problems, and
(3) guide developers in identifying the causes of the identified
problems. Our technique is based on differential testing [8],
in that it runs web applications in different environments and
compares their behaviors in such environments; intuitively,
a difference in behavior indicates a potential problem. More
specifically, our approach operates as follows. First, it opens
the web page under analysis in different browsers and gathers
(1) the DOM generated in each of these browsers and (2)
a screenshot of the rendered web page. Second, it compares
the information collected and matches the web page elements
across browsers. Third, it compares the position and appearance
of the matched web page elements and identifies dissimilar
elements. Finally, for every issue found, it reports the issue
and the specific HTML tag associated with it to help developers
understand and solve the issue.

To evaluate the usefulness of our approach, we performed
an empirical study in which we assessed the effectiveness
and precision of the approach. To perform the study, we
built WEBDIFF, a prototype implementation of our approach,
applied the tool to nine real web applications, and measured
the number of true and false positives generated by WEBDIFF.

george
26th IEEE International Conference on Software Maintenance in Timișoara, Romania

george

george
978-1-4244-8628-1/10/$26.00 ©2010 IEEE

george

george

george

Overall, the results of our study are encouraging: WEBDIFF
was able to automatically identify 121 issues in the appli-
cations, while generating only 21 false positives. Moreover,
many of these false positives could be eliminated with suitable
engineering, as they are mainly due to limitations in our current
implementation of WEBDIFF.

The main contributions of this paper are:
1) A classification of cross-browser issues for web applica-

tions.
2) A novel technique for automatically detecting cross-

browser issues by combining the analysis of DOM and
visual information.

3) The implementation of the technique in a tool, WEBD-
IFF, and an evaluation of WEBDIFF on a set of real web
applications.

II. BACKGROUND

A. Web Applications and Web Browsers

A web application follows a typical client-server computing
model and usually consists of several server and client side
components. Server side components get invoked when the web
server receives a request (typically, from a remote user through
a web browser). As a result of the server side execution, various
client side components are dynamically generated and sent
back to the web browser in the form of HTML (HyperText
Markup Language — http://www.w3.org/html/) pages. These
pages, which are rendered by the browser, reference or contain
resources such as images, animations, style information (i.e.,

Cascading Style Sheets (CCS) — http://www.w3.org/Style/CSS/)
and scripts (e.g., JavaScript or VBScript).

A web browser consists of different subsystems that handle
various functionality, such as processing the client side com-
ponents and managing the interactions of these components
with system resources (e.g., network, display, file system).
Grosskurth and Godfrey [9] describe the reference architec-
ture followed in several open source browsers. Among the
subsystems of a browser, one of the main components is the
layout engine, which is responsible for rendering a web page
by parsing the HTML tags in the page and applying to the
relevant elements the style information contained in the CSS
stylesheets for the page. The browser also maintains a DOM
(Document Object Model) representation of the web page in
its memory to allow scripts associated with the page to query
and modify web page elements. Although there is a standard
definition for the DOM format (see http://www.w3.org/DOM/),
web browsers often deviate from such standard. Moreover,
since most web pages have browser specific code to make
them work on different browsers and platforms, the DOM
generated by different browsers can be very different. For this
reason, simply comparing the DOM information in different
web browsers is far from ideal when comparing web pages
rendered in such browsers.

B. Image Matching

Image matching is an important problem in the area of
Computer Vision. Matching images of real world objects is

particularly challenging, as a matching algorithm must account
for factors such as scaling, lighting, and rotation. Fortunately,
the images that we need to compare in this work are screen
captures of web pages rendered in different browsers. In this
context, the above issues do not occur, and the main problems
are, for instance, the shifting of web page elements or the fact
that some elements are not displayed at all (for a complete list
of issues, see Section IV.

A basic technique for comparing two images is to compare
their histograms, where an image histogram represents the
distribution of the value of a particular feature in the image
[10]. In particular, a color histogram of an image represents
the distribution of colors in that image, that is, the number of
pixels in the image whose color belongs in each of a fixed
list of color ranges (bins). Obviously, if two images are the
same, their color distributions will also match. Although the
converse is not true, and two different images can have the
same histogram, this issue is again not particularly relevant in
our problem domain.

Basic histogram matching techniques find the difference
between corresponding bins across two images, which can
result in false positives in the case of small shifts. The use of
the Earth Movers’ Distance (EMD) [11] can alleviate this issue.
EMD is a measure of the distance between two distributions
and, intuitively, consists of the minimum amount of “work”
required to make the two histograms identical by moving
around the quantities in the different bins. Because it can ignore
small changes in an image, EMD is widely used in computer
vision. For the same reason, it is a suitable approach for
the problem of comparing the graphical rendering across web
browsers, where we want to be able to account for negligible
variations while catching larger changes. (In Section V-D, we
describe how we defined the threshold for the EMD metric in
our technique.

III. MOTIVATING EXAMPLE

Before describing cross-browser issues, we introduce a sim-
ple web application that we use as a motivating example. The
application, AjaxSearch, displays words from the dictionary
that match a given search string provided by a user through
a web form. Being a web application, AjaxSearch consists of
server and client side components. The client side components
of AjaxSearch are its main HTML file, search.html (Figure
1), its stylesheet, style.css (Figure 3), and the JavaScript
file script.js (Figure 2). The server side component of
AjaxSearch consists of the PHP script server.php, which
is partly shown in Figure 4. Note that, because each server
side component generates a response that gets interpreted on
the client side and can contain additional scripts, the output
of server.php can also be considered a (dynamically gen-
erated) client side component, as described Section II-A. In
the rest of this section, we will first describe the code and
functionality of each of the components we just described,
then look at the interactions between them, and finally use
the example to present typical cross-browser issues.

1 <html>

2 <head>

3 <script src="script.js" type="text/javascript">
4 </script>

5 <link href="style.css" rel="stylesheet"
6 type="text/css"/>
7 </head>

8 <body>

9 <h1>Ajax Search:</h1>
10 <input type="text" name="query" id="query" />

11 <input type="button" onclick="search()"
12 value="Search" />

13 <h2>Results:</h2>
14 <div id="stats"></div>
15 <ul id="results">
16

17 </body>

18 </html>

Fig. 1. HTML page: search.html.

A. Client-side Components

1) search.html: An HTML file consists of a hierarchy
of tags. The root tag (<html>) contains a <head> and a
<body> tags. The <head> tag provides meta information
about the HTML page and references to external or inline
resources. In our example HTML page, search.html, the
<head> tag refers to the the JavaScript file script.js and
to the CSS stylesheet style.css (lines 3–6). The <body>
tag contains the main web page elements to be rendered. In our
example, such tag contains the header “Ajax Search”, enclosed
in an <h1> tag (line 9). It also contains an input text box
with id = “query” (line 10) and a “Search” button (line 11)
with an associated click event, onclick = “search()”. Finally,
it contains a “Results” header, within an <h2> tag (line 13),
followed by a <div> tag with id = “stats” and a tag
with id = “results”, which will eventually contain the results
returned by the server (lines 14–16).

2) script.js: This JavaScript file, shown in Figure 2,
contains the main client side logic and defines two func-
tions, search and updateResults. As we saw earlier,
the search function is linked to the click event of the
“Search” button on the search.html page. When the button
is clicked, this function is therefore invoked by the browser.
Inside this function, at line 4, a common DOM API function
(document.getElementById) is used to get a reference
to the input text box using its unique identifier (query) and
store it in the JavaScript variable q. Next, at line 5, the value
contained in the input text box is used to build the URL of
the server side component. More precisely, the input text value
is used as the HTTP Request parameter q, which is added
to the query string part of the URL. Next, at line 6, the
function checks for the availability of the XMLHttpRequest
(abbreviated as XHR) object. (This check is necessary because
this object is not supported on versions of Internet Explorer
prior to Version 7.) On lines 8–12, the script creates and
submits an asynchronous XHR (popularly known as AJAX—
Asynchronous Javascript and XML) request to the server side
component server.php. The request contains a callback to
function updateResults, which means that the function
will be called when the state of the XHR object changes. (An
XHR object transitions through states 0 to 4 during the request
process.) Function updateResults first checks whether the

1 var xhr;
2

3 function search(){
4 var textBox = document.getElementById("query");
5 var url = "server.php?q="+textBox.value;
6 if (window.XMLHttpRequest)
7 {// code for IE7+, Firefox, Chrome, Opera, Safari

8 xhr=new XMLHttpRequest();
9 xhr.onreadystatechange=updateResults;

10 xhr.open("GET", url, true);
11 xhr.send(null);
12 }else
13 {// code for IE6, IE5

14 xhr=new ActiveXObject("Microsoft.XMLHTTP");
15 xhr.onreadystatechange=updateResults;
16 xhr.open("GET", url, true);
17 xhr.send();
18 }
19 }
20

21 function updateResults(){
22 if(xhr.readyState == 4){ // Response is ready

23 if(xhr.status == 200){ // Response status is OK

24 var results = document.getElementById(’results’);
25 results.innerHTML=xhr.responseText;
26

27 var stats = document.getElementById(’stats’);
28 stats.innerHTML= results.childElementCount +
29 " results found !";
30 }else{
31 alert("Error while processing request!");
32 }
33 }
34 }

Fig. 2. JavaScript file: script.js.

1 h1{ text-shadow: #6374AB 2px 2px 2px; }
2 ul{ border:1px solid; }

Fig. 3. CSS stylesheet: style.css.

state of the XHR object is the final state (4) and the response
status is “OK” (lines 22–23). If so, the script assigns the server
side response, contained in field responseText, to the
results container (lines 25–26). Next, the script computes
the size of the results container and updates the <div>
container identified by id = “stats” accordingly.

3) style.css: This stylesheet for the example, shown in
Figure 3, applies two styles to the web page’s elements. The
first style adds a shadow to the text inside the main header
(<h1>). The second style defines a border around the container
for the results, which is a tag.

B. Server-side Components

1) server.php: A server side component obtains input
from the client side through an HTTP Request object, whose
parameters consist of string pairs <name, value> and are
accessed by name. In our example, the script server.php
(Figure 4) is the one invoked when a request is performed. At
line 3, the script extracts parameter “q” and checks whether it
is alphanumeric. If so, at line 4, it passes the parameter to func-
tion lookupDB, which finds and returns an array of relevant
results. Then, on lines 5–6, iterates over the results, encloses
each result in an tag to create a list, and sends the list
element back to the client component by printing it. (For the
sake of space, we do not discuss functions isAlphaNumeric
and lookupDB, whose details are not relevant, and simply
assume that the functions are defined in file common.php,
which is included at line 2.)

1 <?php

2 include ’common.php’;
3 if(isAlphaNumeric($_GET[’q’])){
4 foreach(lookupDB($_GET[’q’]) as $result){
5 echo "".$result."\n";
6 }
7 }
8 ?>

Fig. 4. Server side PHP: server.php.

1 computerize
2 computerized
3 computerizes
4 computerizing
5 computerization
6 computerizable

Fig. 5. Results returned by the server for query “q=compute”.

C. Interaction between Components

We now discuss the typical workflow for our example. The
web browser initially makes a request for the HTML file
search.html. When it receives the file from the server,
it parses it, discovers the resources linked in the file, and
requests them. It then renders the basic page, which contains no
results. Assume that the user types the search string “compute”
and presses the “Search” button. This action would result
in an AJAX request being generated and sent to the server
side component server.php, which would return the results
data back to the browser. Figure 5 shows a possible response
generated by server.php, whereas Figures 6(a) and 6(b)
show the final result of the query as it would be displayed on
two browsers.

As the screenshots in the figures show, there are three
noticeable differences in the output of the browsers, and thus
three potential issues. First, the heading “Ajax Search” does
not have a shadow in Figure 6(b); this problem occurs because
the text-shadow CSS style on line 2 of style.css is
not supported by Internet Explorer 8. Second, the result count
displayed in Figure 6(b) is different; the problem, in this
case, is that Internet Explorer 8’s DOM does not expose the
childElementCount field, which is thus “undefined” (see
script.js, line 28). Finally, the border around the results
includes the bullets in Mozilla Firefox 3.5 but excludes them
in Internet Explorer 8, due to formatting issues.

These types of issues are far from rare because developers
tend to use mostly one browser during development and then
port the code to other browsers. Even in the case where
multiple browsers are considered from the beginning, it is dif-
ficult to test for all possible browsers and versions. Moreover,
such testing is performed in a mostly manual manner, and is
thus extremely time consuming (and often neglected). In fact,
cross-browser issues are notoriously considered to be a major
problem by most web application developers.

IV. CROSS-BROWSER ISSUES

In this section, we list the type of cross-browser issues and
classify them based on their cause.

A. Types of Issues

Cross-browser issues manifest themselves either in the web
page layout or in terms of functionality.

(a) Mozilla Firefox 3.5 (b) Internet Explorer 8
Fig. 6. Example web page rendered in two browsers and showing three issues:
1. Header shadow missing in Figure 6(b); 2. Result count undefined in
Figure 6(b); 3. Bullets placed differently with respect to a bounding box.

1) Layout Issues: Layout issues are very common in web
applications and result in differences in rendering the web
page across browsers that are visible to the user. These issues
can be classified as differences in element position, size,
visibility, or appearance. Differences in positions and size are
self explanatory. Differences in visibility consist of an element
not being visible in one or more browsers. Finally, we define
as differences in appearance when the an element’s style or
content is different across browsers.

2) Functionality Issues: These issues involve the function-
ality of a web application and are often due to differences in
the way the script elements within a web page are executed
by different browsers. Functionality issues typically limit the
ability of a user to access specific web page elements, such
as widgets. Although the users would identify the problem
when they try to exercise the affected elements, these issues are
sometimes more difficult to identify because they may not have
any visible effect (e.g., a button may be displayed correctly
even if it does not work).

B. Underlying Causes

Browser compatibility issues are mainly due to one or more
of the following reasons.

1) Non Compliant Browsers: Although the client side tech-
nologies have associated standards, they continue to evolve. At
any point in time, there are thus features that are in the spec-
ification but are either not implemented or not implemented
correctly in some browsers. These problematic features are of-
ten known, and there are web sites (e.g., http://quirksmode.org)
that maintain a list of such features to help web developers be
aware of them and provide suitable workarounds in their code.
The check performed at line 6 by the script.js script in
Figure 2 is a typical example of one such workaround.

2) Extra Features in Browsers: Many browsers implement
extra features that are not a part of the standard to provide
more flexibility to developers. While web developers try to
avoid using these features as much as possible, they do use
them for convenience. For example, Internet Explorer supports
conditional comments—comments that allow the commented
out code to conditionally run in Internet Explorer while being

Fig. 7. Issue in Netscape due to an unclosed table tag (source:
http://netmechanic.com).

ignored in other browsers. Conditional comments are often
used by developers to include in a page a fix for certain issue
present in Internet Explorer but not in other browsers.

3) Browser’s Default Style: Each browser has a default
stylesheet for HTML elements that defines the appearance of
elements that have no specific style associated with them. A
typical example of this is the different appearance of buttons
and other form elements across browsers. Using the default
style for certain HTML elements might cause them to appear
differently across browsers.

4) Unavailable Resources: Local resources, such as fonts
and browser plugins, may affect the way a page is rendered. In
the case of fonts, for instance, if a specific font is unavailable,
the browser would choose the best match from the set of
available fonts on the system. Since it is left to the browser
to find this best match, it is common for different browsers to
choose fonts that do not appear similar to each other.

5) Syntactically Incorrect Pages: Most web browsers are
lenient in the case of HTML pages that contain missing,
misspelled, or misplaced HTML tags. Each browser, however,
may handle such pages in a different manner, as there is no
standard that describe how to do it. Consider, for instance,
the example shown in Figure 7, where an unclosed HTML
table tag results in a blank page in an old version of Netscape
Navigator but is displayed properly in Internet Explorer.

V. TECHNIQUE

The overall goal of our technique is to find dissimilar web
page elements across browsers. To do this, our technique uses
a reference browser and compares data from all the other
browsers considered against it. For each web page analyzed,
the approach works as follows. First, it collects information
from each browser’s DOM and captures a screenshot of the
web page. Second, it identifies and marks variable elements in
the reference browser’s DOM. Third, it matches each browser’s
DOM to the DOM of the reference browser. Finally, it com-
pares the matched information across browsers and generates
a list of elements that have a mismatch. In the following
subsections, we describe these four steps in detail.

A. Data Collection

To collect comparable visual data from the different
browsers, each browser should be setup so that the size of

the visible area where the web page gets rendered is the same
across all browsers. In this way, our technique can capture
screenshots of the same size. Once this is done, our technique
repeatedly takes a screenshot of the visible area and scrolls
down until the end of the page is reached to obtain the
combined screenshot of the entire web page. (For pages that are
small enough to fit on one page, this is obviously unnecessary.)
A client side JavaScript program is then executed on each
considered browser to collect partial DOM information that
is then sent back to the server for processing. For every DOM
node, the script collects the following properties (where we
call DOM element the web page element associated with the
DOM node):
• tagname: Name of the tag associated with the DOM element.
• id: Unique identifier of the DOM node, if defined.
• xpath: X-Path of the node in the DOM structure.
• coord: Absolute screen position of the DOM element.
• clickable: True if the DOM element has a click handler.
• visible: True if the DOM element is visible.
• zindex: DOM element’s screen stack order, if defined.
• hash: Checksum of the node’s textual content, if any.

B. Detection of Variable Elements

Variable elements on a web page are generated elements
that may change when the page is reloaded, such as ads or
statistics. These elements need to be ignored during comparison
because they would likely result in false positives. To do so,
our technique compares the DOM and screenshot information
obtained from the reference browser over two subsequent, iden-
tical requests. First, the DOM trees are traversed together in
breadth first fashion to check that the nodes are identical in both
trees. Then, for matching DOM nodes, our technique compares
the part of the screen capture corresponding to such nodes,
as identified by the nodes’ absolute screen coordinates. (This
is basically a simplified version of our comparison algorithm,
as here we are not doing a cross-browser check and expect
the pages to be exactly identical, except for their variable
elements.) All DOM nodes that reveal either a structural or
a visual difference in this analysis are marked as variable and
ignored in the subsequent steps.

C. Cross-browser Comparison — Structural Analysis

The goal of this phase is to match the DOM nodes obtained
from different browsers. To do this, we use the algorithm
presented in Algorithm 1, which consists of two procedures:
MatchDOMTrees and ComputeMatchIndex.
MatchDOMTrees tries to match DOM tree nodes in every

browser Bri with those in the reference browser Br0. This
algorithm takes as input the DOM information for every
browser considered, DOMi, and generates the mapping Map

between the DOM nodes of each browser and the DOM nodes
of the reference browser, DOM0. The foreach loop on line
3 iterates over the browsers. DOM0 is then traversed in a
breadth-first fashion using a WORKLIST . Initially, all the
child nodes of the root node are added to the WORKLIST

(line 4). Until the WORKLIST is empty, a node is extracted

Algorithm 1: Structural Analysis.
/* MatchDOMTrees */
Input : DOMi for browsers Br0..Brn

Br0 : reference browser
Output: Map[i] between Br0, Bri

1 begin

2 Map ← list of size n, each item initialized to ∅
3 foreach DOMi where i ∈ [1, n] do

4 insert(root(DOM0).children,WORKLIST)
5 while WORKLIST is not empty do

6 node ← extract(WORKLIST)
7 bestMatch ← NULL

8 bestMI ← 0
9 foreach unvisited nodej from DOMi do

10 mI ← ComputeMatchIndex(node, nodej)
11 if mI == 1.0 then

12 Map[i].add(node, nodej)
13 DOMi.removeNode(nodej)
14 else if bestMI < mI then

15 bestMatch ← nodej

16 bestMI ← mI

17 end

18 end

19 if bestMI > 0.5 then

20 Map[i].add(node, bestMatch)
21 end

22 insert(node.children,WORKLIST)
23 end

24 removeExtraNodes(Map[i])
25 end

26 return Map

27 end

/* ComputeMatchIndex */
Input : a, b where a ∈ DOMi, b ∈ DOMj

Output: ρ (Match Index)
1 begin

2 α ← 0.9
3 ρ, ρ1, ρ2 ← 0
4 if (a.id �= ””) ∧ a.id == b.id then

5 ρ ← 1
6 end

7 else if a.tagname == b.tagname then

8 ρ1 ← (1 − LevenshteinDistance(a.xpath, b.xpath)/
max(length(a.xpath), length(b.xpath)))

9 foreach prop in {“coord”, “clickable”, “visible”, “zindex”,

“hash”} do

10 if a.prop == b.prop then

11 ρ2 ← ρ2 + 1
12 end

13 end

14 ρ2 ← ρ2/5
15 ρ ← (ρ1 ∗ α + ρ2 ∗ (1 − α))
16 end

17 return ρ

18 end

from it and processed (lines 5–6). For each such node, the
nodes in DOMi are traversed to find the best match (line
9). To match two nodes, the technique computes a match
index by invoking procedure ComputeMatchIndex, which
is described below. In the case of an exact match (i.e., when the
match index value is 1.0), the mapping is added to Map, and
the mapped DOM node is removed from DOMi (lines 11–13).
If an exact match is not found, the best matching nodes are
added to Map but not removed from DOMi (in case a better
match for these nodes can be found later). Note, however, that
the algorithm sets a minimum match index threshold of 0.5
(line 19) to avoid matching nodes that are too dissimilar. After
mapping all the nodes, if more than one node from DOM0 is
mapped to the same node, the ones with a lower match index
are removed (line 24).

ComputeMatchIndex computes the match index for each
pair of nodes passed to it as parameters using the properties of
the nodes that we discussed in Section V-A. First, it checks
whether (1) the id is defined and (2) the two nodes have
the same id. If so, it identifies the nodes as a perfect match
and assigns 1 to the match index ρ (line 5), which is then
returned. (Because ids are manually assigned by developers
and are unique, two nodes with the same id are necessarily
corresponding nodes in the two DOM trees.) If the ids do not
match or are not defined, the algorithm compares the tagnames
of the nodes (line 7). Although different nodes can have
the same tagname, corresponding nodes cannot have different
tagnames. Therefore, if the tagnames are not equal, the default
value of ρ, zero, is returned. Otherwise, the algorithms com-
putes the matching index using some of the other properties
of the nodes. First, the algorithm computes the normalized
Levenshtein distance between the xpaths for the two nodes
and assigns its ones complement to ρ1 (line 8).1 Then, the
algorithm computes the fraction of properties coord, clickable,
visible, zindex, and hash that match between the two nodes,
and assign the computed value to ρ2 (lines 9–14). Finally, the
algorithm computes the matching index by adding ρ1 and ρ2,
suitably weighted (line 15). Because both ρ1 and ρ2 are values
between zero and one, the value of the resulting matching
index, ρ, is also between zero and one. The reason why ρ1

is weighted considerably more than ρ2 in the computation of ρ
is because two corresponding nodes should have the same, or
at least a very similar, xpath. Intuitively, the other properties
are only used to break a “tie” between two very likely matches.
It is worth noting that we verified experimentally that there are
only very rare cases in which ρ2 plays any role in deciding a
match. In other words, in the absence of developer-defined ids
for the nodes, the nodes’ xpaths are a reliable indication of
whether two nodes match.

To illustrate with an example, let us consider the DOM
information for nodes n1 and n2 shown in Figure 8 using the
JSON (Javascript Object Notation) format, and assume that
there are 50 additional matching elements in the omitted part
of the xpath properties for the two nodes. Because there is no
developer-defined id, but the nodes have the same tagname,
the algorithm would compute the match index for n1 and n2
using the other properties of the nodes. In this case, ρ1 would
be 0.98 (the edit distance between the two xpaths is 1, and
the number of element in both sequences is 54), and ρ2 would
be 0.8 (four of the five properties match). The overal match
index for the two nodes would therefore be approximately 0.96,
which indicates a very likely match.

D. Cross-browser Comparison — Visual Analysis

DOM information can help us identify which page elements
may be causing a problem. However, the DOM does not have
information on how the element exactly appears on screen.
Therefore, our technique also performs a visual analysis of the

1The Levenshtein distance between two sequences is defined as the min-
imum number of edits (i.e., insertion, deletion, and substitution) needed to
transform one sequence into the other [12].

// Node n1, from Mozilla Firefox’s DOM
{ "tagname":"LI", "id":"", "xpath":"/HTML/BODY/.../UL/LI",
"coord":"140,60", "hash":"0xA56D3A1C", "clickable":"0",
"visible":"1", "zindex":"0" }

// Node n2, from Internet Explorer’s DOM
{ "tagname":"LI", "id":"", "xpath":"/HTML/BODY/.../OL/LI",
"coord":"140,60", "hash":"0x1C394C1B", "clickable":"0",
"visible":"1", "zindex":"0" }

Fig. 8. Example DOM information.

page. The visual analysis, described in Algorithm 2, leverages
the structural information computed in the previous step to (1)
identify corresponding elements in the browser screenshots and
(2) perform a graphical matching of such elements. In the rest
of this section, we describe the different parts of the algorithm
in greater detail.
CrossBrowserTest is the main function in the algo-

rithm. It takes as input, for each browser Bri, its mapping from
the reference (Mapi), its screen capture information (SCi), and
the set of variable nodes in the reference browser (V N0). As
a preliminary step, the algorithm “grays out” the areas corre-
sponding to variable nodes in the screenshots for the reference
browser to eliminate possible false positives caused by them
(line 2). It then processes the data from the different browsers.
For each browser, the algorithm first finds the mapped variable
nodes in it and grays out the corresponding areas as well (lines
5–6). It then visits the DOM tree nodes from leaves to root
(i.e., in a bottom-up fashion). For each DOM node (nodej),
it gets the corresponding node node in the reference browser,
according to the mapping (line 8). The algorithm checks for
positional shifts in the DOM node by comparing the relative
distances of both node and nodej from their DOM containers
(lines 9–10). If it finds such a shift, the technique verifies it
in the areas of the screenshots that correspond to the DOM
containers by invoking procedure VChk, described below (lines
11–16). If the difference is confirmed by VChk, the relevant
DOM node is added to set Mismatchi (line 17).

Next, the algorithm compares the actual nodes, without
considering their containers, for visibility, size, and appear-
ance differences. Visibility and size differences are checked
first, so as to limit the number of (more expensive) graph-
ical comparisons. First, the algorithm checks for visibility
differences by invoking procedure visibilityDiff and
passing node and nodej as parameters (line 23). Procedure
visibilityDiff, not shown here for space reasons, mainly
compares the visibility attributes of node and nodej and
returns a value that indicates whether they match. If they do not
match, the algorithm adds nodej in the Mismatchi set and
specifies that the difference relates to visibility. If there is no
visibility difference, the algorithm checks for size differences
by invoking procedure sizeDiff on node and nodej (line
26). Similarly to visibilityDiff, procedure sizeDiff
compares the dimensional attributes of the two nodes and
returns a value that indicates whether they match. In case of a
mismatch, the algorithm records the difference and its reason
(line 27). If both visibility and position match, the algorithm
compares the screenshots’ graphical areas corresponding to
node and nodej using again procedure VChk (lines 28–31).

Algorithm 2: Visual Analysis.
/* CrossBrowserTest */
Input : Mapi, SCi for browsers Br0..Brn

Br0 : reference browser
V N0 : set of variable nodes in Br0

Output: Mismatchi between Br0, Bri

1 begin

2 SC0 ← grayOutNodes(SC0, V N0)
3 for i → 1 to n do /*for all browsers*/
4 Mismatchi ← ∅
5 V Ni ← getAllMappedNodes(V N0,Mapi)
6 SCi ← grayOutNodes(SCi, V Ni)
7 foreach nodej ∈ Mapi, /∈ V Ni do /*Bottom-Up*/
8 node ← getMappedNode(nodej ,Mapi)

// Check for positional shifts
9 relDist1 ← relDistToContainer(node)

10 relDist2 ← relDistToContainer(nodej)
11 if diff(relDist1, relDist2) then

12 parent1 = parent(node)
13 parent2 = parent(nodej)
14 box1 ← parent1.box
15 box2 ← parent2.box
16 if not V Chk(SC0, SCi, box1, box2) then

17 insert(Mismatchi, parent2,
18 “content shifted”)
19 end

20 end

21 box1 ← node.box

22 box2 ← nodej .box

23 if visibilityDiff(node, nodej) then

24 insert(Mismatchi, nodej ,

25 “visibility changed”)
26 else if sizeDiff(node, nodej) then

27 insert(Mismatchi, nodej , “changed size”)
28 else if not V Chk(SC0, SCi, box1, box2) then

29 insert(Mismatchi, nodej ,

30 “changed appearance”)
31 end

32 end

// Group Issue List
33 Mismatchi ← clusterNodes(Mismatchi)
34 end

35 end

/* VChk -- Visual Check */
Input : SCi, SCj for browsers Bri, Brj

Boxi, Boxj : Image co-ordinates to compare
Output: Matches : Boolean value indicating a match or a mismatch

1 begin

2 imagei ← crop(SCi, Boxi)
3 imagej ← crop(SCj , Boxj)

// average colors per 100px2 image area
4 α ← (numColors(imagei) × 100)/area(Boxi)

// threshold based on color density and size
5 threshold ← chooseThreshold(α,Boxi)

// Earth Movers’ Distance (EMD)
6 emd ← getEMD(imagei, imagej)
7 if emd ≤ threshold then

8 return true

9 end

10 return false

11 end

Also in this case, a mismatch is recorded by adding nodej to
set Mismatchi and specifying that the difference relates to
appearance. Finally, the algorithm clusters the information in
the Mismatchi set by aggregating differences that occur in
neighboring areas on the screen, so that they can be reported
together to developers (line 33). The clustering is performed
in procedure clusterNodes using the visual coordinates
of the nodes in the Mismatchi set. Other details about
clusterNodes are of limited relevance and are not reported
for space reasons.

TABLE I
THRESHOLD VALUES CHOSEN BY CHOOSETHRESHOLD .

Small CD (< 1) Large CD (≥ 1)
Small Image (< 104 square pixels) 1 0.5
Large Image (≥ 104 square pixels) 2 1

Procedure VChk performs the image comparison part of our
technique. VChk takes as inputs two screen captures and two
bounding boxes—set of coordinates of the graphical areas that
must be compared. First, the algorithm extracts the relevant
parts of the images from the screen captures (lines 2–3). It
then compares the extracted images using the EMD metric
(see Section II-B). As a threshold for EMD, the algorithm
uses different values based on size and color density of the
images, where the color density (CD) is computed as the
average number of colors per 100 square pixels. In our early
experiments, where we ran this part of the algorithm on a large
number of screenshots coming from a wide range of pages, we
found that the use of a single threshold was not ideal, as images
with different characteristics tend to behave differently when
rendered. Based on such findings, we defined the four values
of the threshold that are shown in Table I.

VI. EMPIRICAL EVALUATION

To assess the usefulness of our technique, we implemented it
in a tool, WEBDIFF, and performed an empirical evaluation on
a set of real web applications. More precisely, we investigated
the following two research questions:

RQ1: Can WEBDIFF identify cross-browser issues in web
applications?

RQ2: Can WEBDIFF identify such issues without generat-
ing too many false positives?

In the rest of this section, we describe our experimental
setup, present the study performed to investigate RQ1 and RQ2,
and discuss the results of the study.

A. Experimental Setup and Procedure

For our evaluation, we selected three widely used web
browsers—Mozilla Firefox (Version 3.6), Google Chrome
(Version 4.1), and Internet Explorer (Version 8.0)—and ran
them on Microsoft Windows XP. First, we resized the three
browsers so that they had the same viewport size (1000×800
pixels), that is, the same size for the portion of the browser
containing the rendered web page (see Section V-A). Note that,
although we performed this step manually for the study, the
current version of WEBDIFF supports automated resizing as
well.

The module of WEBDIFF that performs the screen cap-
ture and the collection of DOM information consists of a
Python script. The script uses the win32api and the python
image library to automate image capturing, page scrolling,
and combination of partial visual information. To collect the
information from the DOM, the script runs, within each web
browser, a JavaScript URL program that queries and collects
the information. For image processing, WEBDIFF leverages
the OpenCV (http://opencv.willowgarage.com) computer vision
library.

Fig. 9. Georgia Tech web site.

Fig. 10. Issue with Georgia Tech’s web site: shifted elements.

As subjects for our study, we selected nine web pages.
The first page is the front page of our institutional web site,
http://www.gatech.edu, shown in Figure 9. As the figure shows,
the web site uses a professional template and leverages a
variety of HTML features. We selected this page because
we are aware of several cross-browser issues that affect it.
Some of these issues are clearly visible in Figure 10: when
rendered in Internet Explorer, certain elements on the web
page are shifted. The remaining eight pages were chosen
randomly. To perform a fair sampling of subjects, we picked
them using a random link generator service provided by Yahoo!
(http://random.yahoo.com/bin/ryl). The complete list of web
pages considered is shown in Table II. As the table shows, the
web pages considered cover a range of web sites, including
company, university, commercial, and private sites.

To answer RQ1 and RQ2, we ran WEBDIFF on the nine
web pages we selected and collected the reports generated by
the tool. We then checked by hand each report and classified
it as either a true or false positive.

B. Experimental Results and Discussion

Table III reports the results of the study. For each subject,
the table reports the different types of cross-browser issues
identified by WEBDIFF and manually confirmed as true pos-
itives: positional differences (Pos.), changes in size (Size),

TABLE II
SUBJECTS USED FOR THE STUDY.

Subject URL Type
GATECH http://www.gatech.edu university
BECKER http://www.beckerelectric.com company
CHESNUT http://www.chestnutridgecabin.com lodge
CRSTI http://www.crsti.org hospital
DUICTRL http://www.duicentral.com laywer
JTWED http://www.jtweddings.com photography
ORTHO http://www.otorohanga.co.nz informational
PROTOOLS http://www.protoolsexpress.com company
SPEED http://www.speedsound.com e-commerce

TABLE III
NUMBER OF CROSS-BROWSER ISSUES IDENTIFIED.

Faults identified

Subject Pos. Size Vis. Gen. Tot. FP

GATECH 2 3 0 1 6 0
BECKER 2 12 0 2 16 1
CHESNUT 8 4 0 2 14 2
CRSTI 4 4 0 2 9 0
DUICTRL 9 8 0 2 19 4
JTWED 3 9 0 1 14 0
ORTHO 0 0 0 2 2 2
PROTOOLS 4 5 0 2 11 9
SPEED 23 5 0 2 30 3
Total 55 50 0 16 121 21

visual differences (Vis.), and general appearance differences
(Gen.). In addition, the table shows the total number of true
positives (Tot.) and false positive (FP) reported. Note that, as
we discussed above, the issues reported here are the combined
results of comparing the web pages rendered in Firefox (i.e.,

our reference browser) with the pages rendered in Chrome and
Internet Explorer.

As the results in Table III show, our technique was able
to automatically discover and report a large number of cross-
browser issues; overall, WEBDIFF reported 121 true issues of
different types. In particular, WEBDIFF was able to identify
the known issues in the Georgia Tech web site. These results
provide a positive answer to RQ1: WEBDIFF can identify
cross-browser issues in web applications.

As far as RQ2 is concerned, WEBDIFF reported 21 false
positives for the nine subjects considered in the study, which
corresponds to a 17% ratio of false positives. We believe this
to be an encouraging result, for several reasons. First, the ratio
is relatively low, as less than two in ten reports would be
false positives. In other words, the developer time invested in
investigating the reported issues would be well spent for the
most part. Second, the ratio is actually lower than 17% for
most subjects (six our of nine). Third, an investigation of the
false positives showed that many of them are due to (1) minor
differences in some elements containing text and background
images that are mostly unnoticeable for the human eye and
(2) presence of some variable elements that WEBDIFF failed
to identify. We believe that careful engineering of the tool
can help eliminate at least some of these false positives, as
discussed in the next section.

One last point that is worth discussing is the cost of
the approach. The analysis of each of the nine web pages
considered took WEBDIFF less than five minutes to complete.
Given that this time is clearly acceptable, especially for an

analysis that can be run overnight and needs to be run only
once per page, we did not perform a more detailed study of
the cost of the technique.

C. Current Limitations

The current implementation of WEBDIFF has some limita-
tions. In this section, we discuss these limitations and present
possible ways to address them that we plan to investigate in
future work.

Screen Capturing: Currently, WEBDIFF cannot capture
screenshots of web pages that have elements whose scrolling
behavior is different from that of the main page (e.g., frames,
fixed-position elements). The presence of these elements could
cause either partial or erroneous visual information to be cap-
tured by WEBDIFF. Handling these elements is conceptually
simple, but would require a more sophisticated engineering of
the tool.

Embedded Objects: WEBDIFF has a limited ability to
handle web sites that rely heavily on embedded objects, such
as Adobe Flash elements. Since there is no readily available
internal information for these elements, WEBDIFF currently
considers them as a black box and ignores their internal details.
To handle embedded objects, WEBDIFF would need to include
a custom analysis component. The development of such a
component, although possible, would also require an amount
of development effort that we believe is not justified at this
early stage of the research.

Detection of Variable Elements: To identify variable ele-
ments in a web page, WEBDIFF detects changes in web page
elements when reloading the page twice in a small period of
time. In this way, the tool may miss certain variable elements,
which may in turn cause false positives, as it happened in our
evaluation. A better detection of such variable elements would
help reduce the number of false positives. For instance, the
page could be reloaded several times and over a slightly longer
period of time. Also, specific patterns could be used to identify
variable elements (e.g., in the case of external ads loaded in a
page).

VII. RELATED WORK

The research work most closely related to ours is the
technique for assessing web applications’ compliance across
browsers by Eaton and Memon [6]. Their technique requires
developers to provide a set of positive and negative HTML
pages. It then assigns a probability of being faulty to the
HTML tags from these pages for a particular configuration
space. Although useful, their technique requires developers
to manually classify a large number of pages. Moreover the
technique can reveal only issues related to HTML tags, and
not problems related to other client-side components, such as
style sheets or scripts.

More recently, Tamm released a tool that leverages both
DOM and visual information to test the layout in one specific
browser and find layout faults [7]. Although this tool uses the
same information we use, it requires to manually change the
web page being analyzed to hide and show elements while

taking multiple screenshots. Our experience with a similar
approach convinced us that it is too expensive and, at the same
time, unable to detect many relevant issues.

Current industrial web authoring and testing tools have
limited support for automated testing across browsers. Tools
such as Microsoft Expression web [5] and Adobe BrowserLab
[4], for instance, simply present side-by-side screenshots (or
renderings) to the developers. While this helps automating part
of the process, the developers still have to identify, understand,
and fix layout issues manually.

There is related work in understanding web pages from a
purely visual perspective. In particular, Cai and colleagues
propose the VIPS algorithm [13], which segments a web page’s
screenshot into visual blocks to infer the hierarchy from the
visual layout, rather than from the DOM. A limitation of their
approach is that it assumes a fixed layout for a web page (i.e.,

box header on top, main content in the middle, and footer at
the bottom of the page) and clusters visible elements based
on this assumption. While this might work for some class of
applications, it is unlikely to work in general for web pages
with complex layouts. Moreover, using the DOM allows us to
report the specific HTML tag that is responsible for an issue,
which can help developers understand and eliminate the issue.

Existing web testing tools, such as Selenium [14], help
developers write or record test scripts or macros that can then
be run on multiple browsers. All of these tools are limited
by the fact that the test oracles need to be developed mostly
manually. In fact, our technique could be combined with these
tools and provide an automated test oracle that can compare
executions across web browsers. More generally, our technique
could be combined with any test-input generation technique for
web applications (e.g., [15]–[19]).

VIII. CONCLUSION

Cross-browser issues are a relevant and serious problem
for web application developers. Existing techniques for de-
tecting and fixing these issues are however still immature.
In particular, many such techniques are limited by the fact
of requiring a considerable amount of manual effort. In this
paper, we presented an approach for automated identification of
cross-browser issues that addresses the limitations of existing
techniques. To do so, our technique compares web pages by
leveraging both their structural (web page’s DOM) and visual
(web page’s snapshots) characteristics. We implemented our
technique in a tool, WEBDIFF, and used WEBDIFF to perform
an evaluation on a set of real web application. Our results show
that our technique is effective in identifying cross-browser
issues and has a low false positive rate (below 20%).

There are several possible areas for future work. First, we
will improve the implementation of WEBDIFF to eliminate
some of the limitations described in Section VI-C, so as to
further reduce the number of false positives generated by
WEBDIFF. Second, and somehow related, we will investigate
ways to improve histogram-based image differencing, which
can also help the technique further reduce the false positives

ratio. Third, we will perform additional experiments with the
improved version of WEBDIFF and measure its performance.

A longer-term direction for future work is the extension of
our approach to the case of versions of a web applications for
desktop and mobile platforms. This is a challenging problem,
as the application will necessarily look different in the two
platforms, but it should provide the same, or at least similar,
functionality.

ACKNOWLEDGMENTS

This work was supported in part by the NSF awards CCF-
0916605 and CCF-0725202 to Georgia Tech.

REFERENCES

[1] W3Schools.com, “Browser statistics month by month,” http://www.
w3schools.com/browsers/browsers stats.asp, May 2010.

[2] Cambridge Network, “Estate agents must update web browser compati-
bility ahead of microsoft announcement,” http://www.cambridgenetwork.
co.uk/news/article/default.aspx?objid=69332, March 2010.

[3] The Korea Times, “Korea sticking to aging browser,” http://
www.koreatimes.co.kr/www/news/biz/2010/02/123 61463.html, Febru-
ary 2010.

[4] Adobe, “Browser lab,” https://browserlab.adobe.com/, May 2010.
[5] Microsoft, “Expression web,” http://www.microsoft.com/expression/

products/Web Overview.aspx, May 2010.
[6] C. Eaton and A. M. Memon, “An empirical approach to evaluating web

application compliance across diverse client platform configurations,” Int.

J. Web Eng. Technol., vol. 3, no. 3, pp. 227–253, 2007.
[7] M. Tamm, “Fighting layout bugs,” http://code.google.com/p/

fighting-layout-bugs/, October 2009.
[8] W. M. McKeeman, “Differential testing for software,” Digital Technical

Journal, vol. 10(1), pp. 100–107, 1998.
[9] A. Grosskurth and M. W. Godfrey, “A reference architecture for web

browsers,” 21st IEEE International Conference on Software Maintenance,
pp. 661–664, September 2005.

[10] G. Bradski and A. Kaehler, Learning OpenCV. O’Reilly Media,
September 2008.

[11] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as
a metric for image retrieval,” International Journal of Computer Vision,
vol. 40, pp. 99–121, 2000.

[12] V. Levenshtein, “Binary codes capable of correcting spurious insertions
and deletions of ones,” Problems of Information Transmission, vol. 1,
pp. 8–17, 1965.

[13] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, “Vips: a vision-based page
segmentation algorithm,” Microsoft Research, Tech. Rep., November
2003.

[14] OpenQA, “Selenium web application testing system,” http://seleniumhq.
org/, May 2010.

[15] D. Roest, A. Mesbah, and A. v. Deursen, “Regression testing ajax
applications: Coping with dynamism,” in Software Testing, Verification

and Validation (ICST), 2010 Third International Conference on, 6-10
2010, pp. 127 –136.

[16] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D.
Ernst, “Finding bugs in dynamic web applications,” in ISSTA ’08:

Proceedings of the 2008 international symposium on Software testing

and analysis. New York, NY, USA: ACM, 2008, pp. 261–272.
[17] F. Ricca and P. Tonella, “Analysis and testing of web applications,” in

ICSE ’01: Proceedings of the 23rd International Conference on Software

Engineering. Washington, DC, USA: IEEE Computer Society, 2001,
pp. 25–34.

[18] X. Jia and H. Liu, “Rigorous and automatic testing of web applications,”
in In 6th IASTED International Conference on Software Engineering and

Applications (SEA 2002, 2002, pp. 280–285.
[19] W. G. J. Halfond and A. Orso, “Improving test case generation for

web applications using automated interface discovery,” in ESEC-FSE

’07: Proceedings of the the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering. New York, NY, USA: ACM, 2007,
pp. 145–154.

