
WATER: Web Application TEst Repair

Shauvik Roy Choudhary*, Dan Zhao†*, Husayn Versee*, Alessandro Orso*

*College of Computing †College of Information Science and Engineering
Georgia Institute of Technology Hunan University

Atlanta, GA, USA Changsha, Hunan, China
shauvik@cc.gatech.edu dzhao34@gmail.com
hversee3@gatech.edu
orso@cc.gatech.edu

ABSTRACT
Web applications tend to evolve quickly, resulting in errors and fail-
ures in test automation scripts that exercise them. Repairing such
scripts to work on the updated application is essential for maintain-
ing the quality of the test suite. Updating such scripts manually
is a time consuming task, which is often difficult and is prone to
errors if not performed carefully. In this paper, we propose a tech-
nique to automatically suggest repairs for such web application test
scripts. Our technique is based on differential testing and compares
the behavior of the test case on two successive versions of the web
application: first version in which the test script runs successfully
and the second version in which the script results in an error or fail-
ure. By analyzing the difference between these two executions, our
technique suggests repairs that can be applied to repair the scripts.
To evaluate our technique, we implemented it in a tool called WA-
TER and exercised it on real web applications with test cases. Our
experiments show that WATER can suggest meaningful repairs for
practical test cases, many of which correspond to those made later
by developers themselves.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Verification

Keywords
Web testing, test repair

1. INTRODUCTION
Web applications are popular among developers due to their in-

stant deployment. i.e., unlike traditional desktop applications, web
applications can be updated at a single point (server or cluster) and
quickly delivered to all users. Due to this feature of web appli-
cations, they tend to evolve more frequently as compared to tra-
ditional desktop software. Thus, regression testing is essential to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ETSE ’11, July 17, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0808-3/11/07 ...$10.00.

Web
Application

Tests

Web
Application

Browser
Automation
Framework

Web
Browser

commands

Test Machine Test Slave Web Server

request

results responsecontrols

Figure 1: A typical web testing deployment.

ensure that the updates do not break existing functionality of the
web application. The changes made during evolution often results
in errors and failures in test automation scripts that exercise such
applications. One could discard such test cases from the test suite
but this reduces the quality of the regression test suite. Thus, such
broken scripts need to be updated to work with the latest version of
the web application. The task of updating such scripts is currently
performed manually, which requires a significant manual effort and
time.

Since web applications follow a client-server model, their test-
ing is more sophisticated than traditional applications that run on a
single machine. For illustration, we present a typical web testing
deployment in Figure 1. The tests are executed on the test machine,
which contacts one of many test slaves (virtual machines) to exe-
cute the tests. Web application tests consist of a set of actions that
are performed on web page loaded inside the web browser. For
each test case, the test input is the data entered on a form or the
sequence of events (mouse clicks, selections etc.) fired on web
page elements. These tests are written either in a domain specific
language or in a standard programming language using an client
library API, both provided by a Browser Automation Framework
(BAF). The test actions are actually run on the test slave machine,
which consists of a web browser and the BAF setup in a particular
configuration. The BAF accepts commands for performing various
actions, which it executes in the browser. These commands ini-
tially load in the browser, the web application under test, which is
hosted on a remote web server. After loading the application, sub-
sequent actions are performed on it, which results in execution of
client side scripts (e.g., JavaScript) or requests posted to the web
server for executing additional server side scripts. Like any test
case, web application tests have assertion checks after important
actions have been performed on the web application or at the end
of the test case. In particular, the assertions in web tests check for
the presence of certain elements or select an element and checks
its contents against expected values. These checks determine the
success or failure of the test case.

In web applications, the elements on the web page are often
changed due to requirements change or get displaced due to in-
sertion or deletion of other elements. This can lead to an error if
the test is unable to locate the element at its original location. Such
errors are common and currently need manual effort from the devel-
oper to understand the change and update the test case accordingly.

Figure 2: Screenshot of My Web Search.
Typically, the developer loads the old and new version of the web
application in the browser and analyzes the elements in a debugger
to develop the fix. We think this process can be automated and such
errors can be fixed automatically.

To address the limitations of existing technology, in this paper
we propose a technique to automatically suggest repairs for out-
dated test cases of the following two types: (1) tests that result in
a failure due to mismatch between expected and actual values of
web page elements. (2) tests that result in errors due to displaced
or changed web page elements.

The rest of this paper is organized as follows. In the next sec-
tion, we present an example web application along with a test and
sample changes to motivate our technique. This is followed by the
description of our technique and implemented details in Section
3. Then we present results of our empirical evaluation in Section
4 followed by related work and concluding remarks in Sections 5
and 6.

2. MOTIVATING EXAMPLE
Before we describe our approach, we introduce a simple web

application along with tests to verify its functionality and use it as
a motivating example.

The Web-Application. The web application "My Web Search"
(MWS) is a simplified web search engine that accepts a search key-
word and returns a list of websites matching the keyword. Figure
2 shows the screenshot of a web page generated by MWS. On the
initial page, the user enters a search keyword in the text box and
clicks on the search button. The resulting web page displays for
each search result, the title of the website, a paragraph of descrip-
tion from the website and the website URL. Figure 3 shows the gen-
erated HTML source associated with the web page, which was sent
to the browser in response to the request. This page is parsed into
a DOM1 tree by the browser and is exposed to client side scripts
through the DOM API provided by the web browser. On lines 4–7,
the HTML source shows the web form containing the text box with
name q and the search button that has the identifier search. Lines
8–15 shows the first search result and contains result title enclosed
in the a tag, the result description in the p tag and the result url in
the span tag.

The Test Case. A sample test case for the MWS application is
presented in Table 1. The test has been written using the Selenium
web testing system [11] and consists of different commands that
are executed in the web browser. This is how the script follows:
The first command, open, takes the path of the server side script
1Document Object Model (http://www.w3.org/DOM/)

1 <html>
2 <body>
3 <h2>My Web Search</h2>
4 <form>
5 <input type="text" name="q"/>
6 <input id="search" type="submit" value="Search">
7 </form>
8 <div>
9
10 Georgia Institute of Technology
11
12 <p>Includes offices, departments, news
13 room, professional education...</p>
14 www.gatech.edu
15 </div>
16 <div>...</div>
17 <div>...</div>
18 </body>
19 </html>

Figure 3: HTML source of My Web Search.

as an argument page and loads it in the web browser. The next
command, type, enters the string "Georgia Tech" into the textbox
identified by name q. The clickAndWait command then per-
forms a click on the search button identified by its id search and
waits for the resulting page to load. After the page has loaded, the
last two assertText commands, select a DOM node and check
its text content against expected values. In particular, the command
on line 4 uses the DOM API to select a hyperlink node based on
its indexing on the webpage and checks if its text content match
"Georgia Institute of Technology". The next command selects a
node using its XPath location and checks if its text content matches
"www.gatech.edu".

Changes to the Web Application. We consider four changes
to the MWS web application as shown in Figure 4. In Change A,
the identifier of the search button on line 6 is modified to "searchBtn".
This would lead to an error in the test case on line 2 because of
the failure to locate the button using its original identifier "search".
To repair this command, the developer modifies the argument to
id="searchBtn". For Change B, a link was inserted in the
form between lines 6 and 7. This change results in a failure at
line 4 of the test case because the indexing of the element’s DOM
node changed. To fix the failing test case command for this change,
the developer would modify the DOM locator in argument 1 to
document.links[1]. Incase of Change C, the content of the
DOM node associated with the a tag on lines 9-11 has changed.
This will lead to a failure at the command on line 4 of the test case
due to the mismatch between actual and expected values. This fail-
ure can be fixed by updating the argument 2 of this command with
the actual value of the DOM node text content (i.e., "Georgia Insti-
tute of Technology (GATech)" in this case). For Change D, a div
is placed around the results on lines 18–17. This change leads to
an error at the assertText command on line 5 of the test case
because the XPath locator can no longer be resolved to any ele-
ment. In order to fix this command, the developer would change
the XPath in argument 1 to //body/div/div[1]/span.

Note that for the purpose of illustration in this example, we show
a simple server-side application i.e., all the functionality is per-
formed by the the server side script that generates the web page.
However, the same can be performed using AJAX (Asynchronous
JavaScript And HTML), where the request is sent and received by a
JavaScript program, and the results are updated on the screen using
the DOM API. Although in the motivating example, we illustrate
the differences at the HTML level, our technique described in this
paper operates on the dynamic DOM tree that is maintained by the
browser as a result of all such client-side scripts.

Reasons for Broken Test Scripts. We identified that there
are mainly the following three reasons of broken scripts on a given
web page: (1) Structural changes (2) Content changes. (3) Blind

Command Argument 1 Argument 2
1. open /search.php
2. type q Georgia Tech
3. clickAndWait id=search
4. assertText document.links[0] Georgia Institute of

Technology
5. assertText //body/div[1]/span www.gatech.edu

Table 1: Selenium Web Test.

changes. We define structural changes in the DOM tree as the
changes where any DOM node or node attribute is added, modi-
fied or deleted. Due to such changes, a locator that could select a
DOM node in the older version of the web application might no
longer be able select the corresponding DOM node in the newer
version, thereby leading to a test case error. We call this problem
a non-selection problem and it can be due to a deleted DOM node
or changed DOM location in the DOM tree. Structural changes
can also result in a different node being selected, leading to a prob-
lem that we call mis-selection problem. In this case, the test case
command may either fail due to the observed difference in node
contents of the two corresponding nodes or might result in an error
due to actions not supported by the wrongly selected node (e.g.,
the test case command might try to type text on an element that
does not support the type command). A specific type of structural
changes are the addition, deletion or modification of form elements.
Form elements are important because they are used to collect data
from users, which is then read to perform some action. The values
entered by the test script in such form elements are sometimes es-
sential for the test script to proceed, especially if they are required
by input validation checks. In particular, if a new element is added
to a web form, the test case should be augmented with a step to add
suitable data to the element. Whereas if an existing form element
is deleted, the test case should be updated to skip the commands
involving that element. Modifications of a form element can be
considered as a combination of the addition of the new version of
the element and deletion of the old one. We call the problem of
updating test cases for all such changes as form data problem.

Modification of the text or HTML contained in a DOM node
leads to content changes. Such changes affect the assert com-
mands that check the content of that particular node and leads to
an assertion failure. We call this problem as obsolete content prob-
lem, which is typically repaired by the developer by updating the
expected value with the actual value of the test case. An engaged
reader might notice that some of the problems have an overlap in
the kind of changes they notice in the DOM tree. For example,
a test case assertion failure can either be due to the mis-selection
problem or because of the obsolete content problem. In our tech-
nique we handle such overlaps by using a relative ordering of re-
pairs that the technique attempts to apply. For the discussed exam-
ple, if the test repair technique cannot apply a repair for the mis-
selection problem, it will attempt to repair for obsolete content.

Often there is a server-side change of the web application that
cannot be directly observed in the DOM tree. We call such changes
blind changes as they are not seen by the test scripts on the client
side and therefore cannot be possibly repaired from the client side
alone. Examples of these are business logic changes where the
inputs result in an error or failure message dialog shown on the
web page but a black box technique would not have any guidance
on how to change the inputs for getting rid of the message dialog.
This paper does not address blind changes and we plan to consider
it in future work.

3. APPROACH
The goal of our technique is to repair web application test cases.

For achieving this goal, the technique detects broken parts of a test

CHANGE A
6 <input id="searchBtn" type="submit" value="Search">

CHANGE B
4 <form>
5 <input type="text" name="q"/>
6 <input id="search" type="submit" value="Search">
+ Advanced Search
7 </form>

CHANGE C
9
10 Georgia Institute of Technology (GATech)
11

CHANGE D
++ <div id="container">
8 <div>
9
10 Georgia Institute of Technology
11
12 <p>Includes offices, departments, news
13 room, professional education...</p>
14 www.gatech.edu
15 </div>
16 <div>...</div>
17 <div>...</div>
++ </div>

Figure 4: Sample changes in My Web Search.

case, suggests repairs for them and validates if the repairs actually
make the test case pass. We describe these activities in the follow-
ing two phases of our technique:

3.1 Test Data Collection
The technique accepts a test case along with the old and new

versions of the application, such that the test case passes in the old
version of the application and fails in the new one. For collecting
test data, the technique first runs the test case on the old version of
the web application and collects data form the browser’s DOM tree
for each test case command. Our technique collects ten properties
for each node in the DOM tree as shown in Table 2. The first five
properties are used by test automation systems to select a particu-
lar DOM node2. The other properties are generated values by the
browser as a result of applying client side scripts and styles. These
properties are used in the next subsection for suggesting repairs.

After obtaining the DOM data for the old version, the technique
obtains the same information for the new version of the application
until the broken command results in test execution to abort. It also
saves the details of the broken test case command along with the
error/failure message. If the broken command was due to an as-
sertion failure, the actual value of assertion is also stored. These
details are then provided to the next phase which analyzes the data
collected to suggests repairs.

3.2 Suggesting Repairs
The data collected in the previous step helps our technique iden-

tify the broken test case commands and obtain the error/failure in-
formation. Using this information, this step of the technique sug-
gests repair to be applied to repair the test case. To perform this
task, Algorithm 1 is used, which consists of three main functions,
namely SuggestRepairs, RepairLocators and GetSimi-
larityIndex.

The function SuggestRepairs is the main entry point for this
step and is responsible for suggesting repairs for the test cases. It
accepts as inputs the test case (TC), the line number of the broken
command in the test, DOM information from every command in the
test case on both browsers, error/failure messages and optionally
the actual value, in case of assertion failures resulting from mis-
match from the expected value. This function attempts to address
the four problems discussed in Section 2, namely non-selection

2http://seleniumhq.org/docs/02_selenium_ide.
html#locating-elements

Algorithm 1: Suggesting Repairs For Broken Tests.
/* SuggestRepairs */
Input : TC, i : Test case and index of broken command

Do,Dn: DOM tree collection for each command in TC for old
and new versions of application

msg, val : Error or failure message and optional actual value
Output:Repairs : Prioritized list of suggested repairs

1 begin
2 Repairs← new list initialized to ∅
3 if (msg = ’Locator error’) then

/* Fix Locator */
4 Repairs← RepairLocators(TC, i,Do[i], Dn[i])
5 else if (msg = ’Assertion failure’) then

/* Fix Locator */
6 Repairs← RepairLocators(TC, i,Do[i], Dn[i])
7 ifRepairs 6= ∅ then
8 returnRepairs

/* Fix Assertion */
9 if (TC[i] is a ’Value Assertion’) then

10 TC[i].expected_value← val

11 else
12 TC[i] = negateAssertion(TC[i])

13 Repairs.add(CheckRepair(TC, i))
14 else

/* Populate Form */
15 for j ← 0 to i do
16 if (TC[j] is a “FORM_REQUEST”) then
17 new_elements← FormDiff(Do[j], Dn[j])
18 foreach (e in new_elements) do
19 TC.insertAt(j, selectRandom(e))

20 Repairs.add(CheckRepair(TC, i))

21 ifRepairs = ∅ then
22 TC.remove(i)
23 Repairs.add(CheckRepair(TC, i))

24 returnRepairs

/* RepairLocators */
Input : TC, i : Test case and index of broken command

do, dn : DOM trees for broken command in old and new versions
of the application

Output:Repairs : Suggested Locator Repairs
1 begin
2 Repairs,matches← new list initialized to ∅
3 nodeo ← GetNodeByLocator(do, TC[i].locator)
4 foreach prop in {“id”, “xpath”, “class”, “linkText”, “name”} do
5 if nodeo.prop 6= “” then
6 matches.add(GetNodesByProperty(dn, prop))

7 foreach (node inmatches) do
8 TC[i].locator ← node.xpath
9 Repairs.add(CheckRepair(TC, i))

10 ifRepairs = ∅ then
11 similarNodes← new ordered list initialized to ∅
12 foreach node in dn do
13 sI ← GetSimilarityIndex(nodeo, node)
14 if sI > 0.5 then
15 similarNodes.add(node, sI)

16 foreach node in similarNodes do
17 TC[i].locator ← node.xpath
18 Repairs.add(CheckRepair(TC, i))

19 returnRepairs

/* GetSimilarityIndex */
Input : a, b where a ∈ do, b ∈ dn
Output: ρ (Similarity Index)

1 begin
2 α← 0.9
3 ρ, ρ1, ρ2 ← 0
4 if a.tagname == b.tagname then
5 ρ1 ← (1− LevenshteinDistance(a.xpath, b.xpath)/

max(length(a.xpath), length(b.xpath)))
6 foreach prop in {“coord”, “clickable”, “visible”, “zindex”,

“hash”} do
7 if a.prop == b.prop then
8 ρ2 ← ρ2 + 1

9 ρ2 ← ρ2/5
10 ρ← (ρ1 ∗ α+ ρ2 ∗ (1− α))
11 return ρ

Property Description
id Unique identifier of the DOM node, if defined
xpath X-Path of the node in the DOM structure
class CSS style class of a DOM node
linkText The text content contained, in case of link nodes
name The name attribute, in case of form elements

tagname Name of the tag associated with the DOM element
coord Absolute screen position of a DOM node
clickable True if the DOM element has a click handler
visible True if the DOM element is visible
zindex DOM element’s screen stack order, if defined
hash Checksum of the node’s textual content, if any

Table 2: DOM properties collected

problem, mis-selection problem, form data problem and obsolete
content problem. At first, the technique attempts at lines 3–4, to fix
locator errors which correspond to the non-selection problem. For
this, it calls the routine RepairLocators to update the locator.
It then handles assertion failures by addressing the mis-selection
problem on lines 6–8 by using the same strategy as the one to fix
locator errors to find the correct node. If unable to find a locator,
the technique then addresses the obsolete content problem on lines
9–13. Here, it checks whether the assertion compares actual and
expected values. If so, the expected value is replaced by the actual
value. Otherwise, the assertion command is negated. If the test case
passes after his change, the change is added to the list of suggested
repairs. In case of all other errors, the technique attempts to ad-
dress the form data problem on lines 15–20. To do so, it looks at all
preceding commands to find form requests. At the point where the
form request is sent, the technique attempts to find any newly added
form elements by calling the FormDiff routine. For all such ele-
ments, the technique selects random values in these elements. The
intuition here is that the form request that fails due to the an empty
value of the new element, might get through when a random value
is selected. If no repair can be found, then on lines 21–23 the tech-
nique checks if removing the broken command makes the test case
pass. This can be useful for cases where elements are no longer
present on a web page. After this, the technique outputs the list of
suggested repairs to developers.

The logic to repair locator errors is presented in the RepairLo-
cators function. It takes as input the test case, line number of
the broken command and DOM tree from the old and new versions
of the applications. The output is a list of locator updates that re-
place the current locator to make the test pass on the new version
of the application. On line 3, the technique uses the locator to ex-
tract the DOM node (nodeo) from the old version’s DOM tree. It
then extracts the five properties, which used for locating elements,
from nodeo and searches for them in the DOM tree of the new
version of the web application (lines 4–6). For all the DOM tree
nodes which match the locating properties, the technique updates
the locator to match these nodes and verifies if that makes the test
pass (lines 7–9). If no repair strategy is found in the previous steps,
the technique finds nodes in the new DOM tree that are similar to
nodeo by using GetSimilarityIndex, which is described in
the next paragraph. Then on lines 16–18, the technique updates the
locator in the broken command with that of the similar nodes and
checks if this makes the test pass. All locator updates in this phase
resulting in a test case pass are returned as suggestions.

The function GetSimilarityIndex computes the similarity
of two nodes from different DOM trees. It takes the two nodes as
input and outputs a similarity index, which is a value in range [0,1].
For computing the similarity index, the technique first checks if the
nodes have the same tagname (line 4). Although different nodes
can have the same tagname, we found that it was unusual for a
node to change its tagname during evolution. So, if the tagnames
do not match, the default value of ρ, zero, is returned and means

that the nodes are not similar at all. If the tagnames match, the
similarity index is calculated based on the xpath and other remain-
ing node properties. The first component of the the similarity in-
dex uses the normalized Levenshtein distance between the xpaths
of the two nodes and assigns its ones complement to ρ1 (line 5).
The second component is the fraction computed using the match-
ing node properties (coord, clickable, visible, zindex, and hash),
which is assigned to ρ2 (lines 6–8). The algorithm combines these
two components by a multiplying them with suitable weights. The
first component is assigned a higher weight because the xpath of
the node should be very similar across versions and because many
nodes can have similar properties. Intuitively, the second compo-
nent is only used to break a “tie” resulting from two different nodes
with a similar xpath.

Apart from these three main functions, there are some utility
functions used in the algorithm. Function GetNodeByLocator
searches the DOM tree for a locator and returns the first node that
matches it. The routine GetNodesByProperty searches against
the property and returns all the nodes that match the property.The
function CheckRepair confirms if a suggested change results in
the test case pass completely or at least for the broken command. If
the test case passes completely, the change indicates success and is
returned. If the test fails at the broken command, the suggestion is
discarded by returning null. In case the broken command passes af-
ter the change but the test breaks at a later command, the technique
repeats again to repair that command.

4. EVALUATION
To assess the usefulness of our technique, we implemented it in

a tool called WATER and used it to answer the following research
questions:

RQ1: Can WATER suggest repairs for a significant number of the
broken test scripts in a web application?

RQ2: Does WATER assist repair without providing too many wrong
suggestions?

We describe three case studies for which WATER was used to
repair outdated test scripts for newer versions of the evolving web
application that they interact with. The subjects chosen for the case
studies are all real world web applications with a public software
configuration repository having test scripts developed by develop-
ers themselves.

4.1 Joomla CMS
Joomla [10] is an open source Content Management System (CMS),

which is written in PHP and is used to publish online content. It is
a fairly mature piece of software with 11 years of development and
is very popular – It is used to power 2.7% of the entire web3 and
the latest stable version (1.6.3) has been downloaded over 78,000
times within a week from its release. Joomla has 42 test cases writ-
ten using the selenium testing framework, which we considered for
our study. We chose 4 successive version pairs for this study. Our
choice was influenced by source code changes resulting in a bro-
ken test case and existence of patches to fix broken test cases. The
top section of Table 3 shows the details of the joomla case study.
Column 1 shows the old and new version numbers of the web appli-
cation considered. The column Tbroken shows the number of test
cases broken in the new version and Cfail shows the number of
commands in each of these that are broken. For these broken com-
mands, WATER suggested some repairs, the average of which has
been shown in as shown in the column Savg . The number of test
case repairs that actually corresponded to fixes later made by the
developers have been listed down in column Tfix and the test case
version where the fix was found are presented in the Vfix column.

For the first version pair, there were two test cases that were bro-
ken. Each test had four commands that were broken, for each of
3http://www.joomla.org/about-joomla.html

V ersions Tbroken Cfail Savg Tfix Vfix

19478 – 19480 2 (4,4) (3,3) 2 19484
20430 – 20431 1 (1) (1) 1 20448
20739 – 20740 1 (1) (0) 0 20776
20769 – 20770 2 (1,1) (1,1) 2 20777

V ersions Tbroken Cfail Savg Tfix Vfix

963271 – 963410 2 (1,1) (1,1) 1 v1.7
997469 – 997470 1 (5) (1.4) 1 v1.29

Table 3: Joomla and Ofbiz Case Study

which WATER provided around 2 to 4 (average 3) suggestions. For
these tests, the failure was in the oracle which is an assertEle-
mentPresent command to check if an HTML element identified
by a locator was present on the page or not. All the suggestions
were similar HTML elements present on the test. Thus, the com-
mands with the suggested changes passed and all of them were se-
lected as valid suggestions. Both these broken test cases were fixed
in version 19484 of the tests. The third pair of applications had one
command in a test failing in the new version. The change was in
the option of a HTML drop down (select) element and a particular
value needed to be selected for the test case command to proceed.

4.2 Apache Ofbiz
Apache Ofbiz (Open for Business) [2] is an open source suite

of enterprise applications to integrate and automate business pro-
cesses. It is written using the Java programming language and has
common architectural components that are shared across the dif-
ferent applications. We obtained 16 selenium tests and chose two
pair of versions for our case study as shown in the lower section of
Table 3.

For the first version pair of the applications, there were two bro-
ken tests, each of which contained one broken command. The first
broken test case was due to business logic error which resulted in a
error message being displayed and the test used assertElement-
NotPresent to check for the non-existance of the error. The sug-
gestion generated for this by WATER was to negate the operation
and to check for the existence. Although this change would make
the test pass, we believe that the developer would not repair the
test case and will instead make the desired change in the source
code to fix the bug. For all other broken test cases, the tool could
suggest repairs that actually corresponded to the ones made by the
developers.

4.3 CoScripter User Scripts
CoScripter [7, 8] is a browser based macro capture and replay

tool developed by IBM Research. It is mainly targeted towards
end users who can create and share such web macros with other
users through the tool’s website. The scripts created by this tool
are similar to web application tests, except that they don’t have
assertion checks or oracles. This rules out assertion failures for
these automation scripts. For our study, we extracted all the 5123
scripts from their website and ran them on a regular basis to find
errors due to changes in the websites. Out of these scripts, 180 ran
successfully on day one and five of these were found to be broken
after 4 months. These scripts have been shown in Table 4 and were
translated in a semi- automated manner to selenium test scripts.

WATER was able to fix three out of these five tests. The first web
page contained a form that was completely changed, with three bro-
ken commands. WATER suggested repairs for the first two com-
mands but could not make any suggestions for the third one where
the form submit button was changed completely. For the second
web page, the form was relocated on a different web page and re-
quired one to click on a link to go to that page. Unlike the previous
two studies, the scripts considered in this study had no assertion
checks, leading to more suggestions in the case of script 13389.

Script Domain Changed Fixed? Suggestions
10043 careers.yahoo.com Form No (15,15, 0)
10754 www.icade.fr Form, Reloc. No 0
11525 www.terra.com.br Link text Yes 285
13389 www.terra.com.br Link text Yes 285
18164 www.google.com.br Link text Yes 1

Table 4: CoScripter Case Study

4.4 Discussion
As presented in both case studies, WATER was able to suggest

repairs to broken test cases (RQ1). For the first two, the suggestions
corresponded to real repairs made by developers later. As far as
RQ2 is concerned, WATER suggested 1-3 repairs for each broken
command in the first two case studies and 1-285 repairs for the third
one. The wrong suggestions were due to the lack of a test oracle
(assert) or due to a less strict one (as in the joomla case study)
that resulted in the selection of many similar HTML elements for
repairs.

We see two ways in our technique could be improved. First,
additional information from the server- side script execution and
across web pages can be used to make better suggestions for test
repair and possibly prioritizing the suggestions. Secondly, further
experimentation and feedback from users could help us confirm the
usefulness of our technique over a wider spectrum of web applica-
tions and can pose additional research challenges for repair.

5. RELATED WORK
Daniel and colleagues have developed ReAssert [4] to repair unit

tests by updating the declaration of the expected values with the
actual values obtained from running the failing test. They later ex-
tended their technique [3] by using symbolic execution to handle
control flow and cases involving operations on the variable defining
the expected value. Our approach differs from theirs in two ways.
First, we target the different domain of web application tests. Sec-
ondly, our technique can also repair tests that result in an error due
to changes in the web page.

In the context of web applications, Alshahwan and Harman [1]
have proposed a technique to repair session data during regres-
sion testing. Their technique repairs the user session data that be-
comes outdated due to changes to the web application. Their anal-
ysis considers changes to the structure, exposed interfaces and files
contained in the application. For newly introduced parameters in
the interfaces, their technique attempts to randomly pick values for
such parameters. In case a web page in the test sequence has been
deleted, their technique attempts to find alternate pages to repair
the sequence. If it is unable to do so, it splits the test session into
two. Our technique is focused on repairing real test cases that fail
and focuses on in-page changes as mentioned in Section 2.

GUI Testing is another area with similar challenges due to their
event driven nature. Unlike web applications, GUIs generally do
not provide a hierarchy of elements and such information needs to
be extracted from the GUIs. Memon and Soffa [9] have developed
a technique to generate graph representations of GUIs to find un-
usable tests and then to repair them. Grechanik and colleagues [6]
propose a technique to find differences across GUI version models.
The test script is then analyzed using static analysis for assessing
the impact of the differences and providing suggestions for changes
to avoid possible failures in the GUI application.

In the absence of test oracles, detecting if a test case failed is
an important problem. Dobolyi and Weimer [5] have developed a
technique to detect errors in regression testing by using a precise
comparator derived from other similar web applications. Their re-
sults show that their precise comparator is significantly better than
diff based comparators currently used in practice. Roest and col-
leagues [12] use a similar approach on AJAX web applications by

using a pipelined oracle comparator to ignore irrelevant differences
for regression testing. In contrast to these technique, our approach
knows when a test results in a failure or an error by executing the
test case and suggests repairs to make it pass.

6. CONCLUSION
Web applications tend to evolve quickly resulting in broken test

scripts that need to be updated to work with the newer version of the
application. In this paper, we presented our technique and imple-
mentation WATER to automatically suggest repairs for such bro-
ken tests. Our experiments show that WATER can suggest repairs
for broken web application tests effectively and does not provide
too many wrong suggestions. We believe that this is a step in the
right direction and that further experimentation and feedback from
users can help us improve the technique.

7. REFERENCES
[1] N. Alshahwan and M. Harman. Automated session data

repair for web application regression testing. In Proceedings
of the 2008 International Conference on Software Testing,
Verification, and Validation, pages 298–307, Washington,
DC, USA, 2008. IEEE Computer Society.

[2] Apache Foundation. The apache open for business project.
http://ofbiz.apache.org/, Apr 2011.

[3] B. Daniel, T. Gvero, and D. Marinov. On test repair using
symbolic execution. In Proceedings of the 19th international
symposium on Software testing and analysis, ISSTA ’10,
pages 207–218, New York, NY, USA, 2010. ACM.

[4] B. Daniel, V. Jagannath, D. Dig, and D. Marinov. Reassert:
Suggesting repairs for broken unit tests. In Proceedings of
the 2009 IEEE/ACM International Conference on Automated
Software Engineering, ASE ’09, pages 433–444,
Washington, DC, USA, 2009. IEEE Computer Society.

[5] K. Dobolyi and W. Weimer. Harnessing web-based
application similarities to aid in regression testing. In
Proceedings of the 20th IEEE international conference on
software reliability engineering, ISSRE’09, pages 71–80,
Piscataway, NJ, USA, 2009. IEEE Press.

[6] M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving
gui-directed test scripts. In Proceedings of the 31st
International Conference on Software Engineering, ICSE
’09, pages 408–418, Washington, DC, USA, 2009. IEEE
Computer Society.

[7] IBM Research. Coscripter. http://coscripter.
researchlabs.ibm.com/coscripter/, Apr 2011.

[8] G. Leshed, E. M. Haber, T. Matthews, and T. Lau.
Coscripter: automating & sharing how-to knowledge in the
enterprise. In Proceeding of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems, CHI
’08, pages 1719–1728, New York, NY, USA, 2008. ACM.

[9] A. M. Memon and M. L. Soffa. Regression testing of guis. In
Proceedings of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT
international symposium on Foundations of software
engineering, ESEC/FSE-11, pages 118–127, New York, NY,
USA, 2003. ACM.

[10] Open Source Matters, Inc. Joomla!
http://joomla.org/, Apr 2011.

[11] OpenQA. Selenium web application testing system.
http://seleniumhq.org/, May 2010.

[12] D. Roest, A. Mesbah, and A. v. Deursen. Regression testing
ajax applications: Coping with dynamism. In Software
Testing, Verification and Validation (ICST), 2010 Third
International Conference on, pages 127 –136, 6-10 2010.

