
Platform Support for Developing
Testing and Analysis Plug-ins

Shauvik Roy Choudhary, Jeremy Duvall, Wei Jin, Dan Zhao, Alessandro Orso
College of Computing

Georgia Institute of Technology
{shauvik|jduv|weijin|dzhao|orso}@gatech.edu

ABSTRACT
Plug-ins have become an important part of today’s integrated de-
velopment environments (IDEs). They are useful for extending the
functionality of these environments and customizing them for dif-
ferent types of projects. In this paper, we discuss some features that
should be provided by IDEs to support the development of a spe-
cific kind of plug-ins—plug-ins that support program analysis and
software testing techniques. To guide the discussion, we leverage
our experience in building a plug-in for two different platforms and
generalize from that experience.

Categories and Subject Descriptors: D.2.6 [Software Engineer-
ing]: Programming Environments—Integrated environments

General Terms: Design, Standardization

Keywords: Integrated development environments, plug-ins, soft-
ware testing, program analysis.

1. INTRODUCTION
The feature set offered in modern Integrated Development Envi-

ronments (IDEs) has progressed significantly from the era of simple
(albeit smart) text editors. As the complexity of software systems
have grown, so have demands on the tools needed to build them. As
a consequence, IDEs have evolved into complex environments that
are designed to aid developers’ productivity by providing support
for a large number of software development tasks, such as coding,
access to APIs, testing, and maintenance, just to cite a few. More-
over, instead of multi-tool environments, where compilers, link-
ers, debuggers, and testing tools are all segregated entities, many
of these technologies are seamlessly integrated in modern IDE de-
signs. Another important feature of modern IDEs is that they pro-
vide frameworks that allow for extending an IDE’s core functional-
ity and customize it to more specialized needs through the addition
of plug-ins.1

Ideally, an IDE would provide a set of APIs that suite the needs
of every flavor of external plug-in imaginable. Unfortunately, this

1Plug-ins can also be called add-ins (e.g., in the case of Visual
Studio). To avoid confusion, we use only the term plug-in.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TOPI ’11, May 28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0599-0/11/05 ...$10.00.

is not possible, given the wide variety of needs of different plug-
ins and the risk of overwhelming the users with an API that is too
broad. It is therefore important to choose what functionality should
be exported by a plug-in framework for an IDE, so as to maximize
the cost benefits for plug-in developers. In this paper, we provide
a basis for discussing what kind of features an IDE should provide
to support a specific kind of plug-ins, that is, program analysis and
software testing plug-ins. We choose to target this specific area
both because of our expertise and, most importantly, because many
plug-ins rely on functionality that is directly or indirectly related to
some form of program analysis, whether static or dynamic. (For
example, refactoring plug-ins rely heavily on program analysis to
compute information such as program dependences.) We therefore
believe that the topic is of interest for a broad audience among plug-
ins developers.

We stress that our goal is not to be comprehensive and cover all
possible aspects of this topic. We rather aim to raise some issues
that can be expanded and discussed in more detail at the workshop.
As a starting point for our discussion, we consider a case study—
the development of a testing plug-in for two different platforms
and IDEs: Eclipse [6] and Microsoft Visual Studio [4]. The case
study is based on the direct experience of three of the authors of
this paper, who are the main developers of the plug-in considered.
The plug-in was initially developed for the Eclipse platform and
was then ported to the Visual Studio platform.

The rest of the paper is organized as follows. In the next sec-
tion, we present the specifics of the plug-in we use as a case study
and provide an overview of its functionality. Section 3 discusses
our experience in implementing our plug-in on the two IDEs con-
sidered. Next, in Section 4, we discuss some of the features that
an IDE should provide for the development of analysis and testing
plug-ins. Finally, Section 5 provides some concluding remarks.

2. CASE STUDY: BERT
As we mentioned in the Introduction, the case study for this work

consists in a plug-in that was implemented first for the Eclipse IDE
and then for Microsoft Visual Studio. The plug-in implements
a technique developed by some of the authors and called BERT,
which stands for BEhavioral Regression Testing [2, 3]. BERT is a
recent approach designed to complement existing regression test-
ing strategies that (a) identifies the behavioral differences between
two versions of a program and (b) leverages those differences in
an attempt to pinpoint potential regression faults—unforeseen side
effects of a change.

BERT is designed to operate within an IDE. As soon as a de-
veloper generates a new syntactically-correct version of a program
(e.g., by saving a class after modifying it), BERT is invoked and
provided with the old and new versions of the program (V0 and

Test suite T0 Program V0 Program V1

Code changes C

Change
analyzer

Test
generator

Tests for C TCProgram V0 Program V1

Regression
errors

Test runner
&

Oracle checker

BERT: BEhavioral Regression TestingTraditional Regression Testing

Test runner
&

Behavioral
comparator

Behavioral
differences

Behavioral
difference
analyzer

Raw behavioral
differences

Figure 1: High level view of the BERT approach.

V1, respectively). As shown in Figure 1, that compares BERT to a
traditional regression-testing approach, BERT consists of four main
phases, implemented by four corresponding modules: change an-
alyzer, test generator, test runner and behavioral comparator, and
behavioral difference analyzer.

The change analyzer compares the two versions V0 and V1 of
the program and identifies which parts have changed. In the case
of Java or C# code, the changes consist of the set of classes that
have been modified when going from V0 to V1. The test generator
automatically generates test cases for the changed code (e.g., using
random test generation or a more sophisticated approach such as
symbolic execution). The test runner and behavioral comparator
executes the test cases produced by the test generator on V0 and
V1, compares the behavior of the tests on the two versions, and
records differences in such behavior. Finally, the behavioral differ-
ence analyzer analyzes the differences computed by the behavioral
comparator to refine and rank them.

The final result of these four phases is a set of behavioral differ-
ences that are presented to the developer and ranked so as to show
first changes that are more likely to be the manifestation of a regres-
sion error. In our preliminary evaluation of BERT, we have shown
that the approach can identify subtle regression errors that may go
otherwise undetected and result in failures in the field [2].

BERT was initially implemented as a prototype plug-in for the
Eclipse IDE to support programs written in the Java programming
language. To extend the approach to programs written in the C#
programming language, we have successfully ported many features
of BERT to the .NET platform as a Visual Studio 2010 plug-in.
Like any other plug-in for analysis and testing of programs, the
BERT plug-in needs support from the IDE to perform its tasks.
Specifically, BERT must be able to access functionality for: inter-
cepting save operations, triggering and checking build processes,
computing program differences, generating test cases, instrument-
ing code, running test cases and code in general, visualizing in-
formation to the user, and allowing the user to interact with such
information. This is a fairly rich and varied set of functionality,
which makes BERT a good case study for discussing plug-in sup-
port within IDEs.

3. OUR EXPERIENCE
In this section, we discuss our experience in developing the BERT

plug-in for two different platforms and IDEs. BERT’s Eclipse plug-

in is written in Java and uses several features provided by the Eclipse
plug-in development framework [1] and by other external tools.

BERT uses built-in Eclipse features to intercept save and build
events and invoke a build operation if it is not automatically in-
voked by the system. (Eclipse provides the user the option to enable
and disable automated builds.) Regardless of whether the build is
performed automatically or invoked by the plug-in, BERT checks
its outcome. If the build is successful, BERT considers the newly
generated version of the program as version V1, whereas the imme-
diately previous version (i.e., version V1 of the previous invocation
of BERT) is tagged as version V0 (see Section 2).

Given versions V0 and V1, BERT again leverages the IDE’s
functionality to compute the differences between V0 and V1 in
terms of a list of changed classes between the two versions. For
each changed class c, the plug-in uses a third-party tool, Randoop
[5], to generate test cases for c in JUnit format (http://www.
junit.org/). The resulting test cases and the code are instru-
mented using the bytecode rewriting library Javassist (http://
www.csg.is.titech.ac.jp/~chiba/javassist/), so as to add
probes that can log relevant state information at runtime. State in-
formation is logged in the form of XML files using the Java SAX
library (http://sax.sourceforge.net). BERT runs the instru-
mented test cases on the instrumented versions V1 and V0 of the
modified classes using Eclipse’s support for JUnit and, after run-
ning the test cases, compares the dynamically collected state infor-
mation to identify behavioral differences between the two versions.

Implementing BERT for Visual Studio required an almost com-
plete rewriting of the code because Visual Studio plug-ins are writ-
ten in the C# language. However, the modular design of the ex-
isting Eclipse plug-in helped us considerably, as we were able to
reuse much of the code architecture and design. BERT’s Visual-
Studio plug-in also intercepts build events from the IDE, although
the build mechanism is fairly different in the two environments,
which required considerable changes in the implementation of the
basic mechanisms. In addition, the differencing of builds is not di-
rectly supported by Visual Studio, so we had to develop and add to
the plug-in a differencing engine. For test case generation, BERT
leverages the PEX framework for unit test generation [8, 7], which
is also available as a Visual Studio plug-in, together with a random
method sequence generator. Instrumentation of the test cases gen-
erated by PEX and of the code is performed at the binary level using
the CCI framework (http://cciast.codeplex.com/). Also in
this case, the probes added to the code produce a log of relevant
state information in XML format. Finally, similarly to its Eclipse
counterpart, BERT for Visual Studio runs the instrumented test
cases on the instrumented versions (old and new) of the modi-
fied classes, compares the runtime state information, and analyzes
the results of the comparison to identify behavioral differences be-
tween versions V0 and V1 of the program.

As it can be inferred from the above discussion, the development
of both BERT plug-ins was made easier—maybe even possible—
by the support provided by Eclipse and Visual Studio (together with
some third-part libraries and additional plug-ins). For instance, be-
ing able to automatically compute the differences between two ver-
sions within Eclipse was extremely useful, and so was being able
to generate plug-in templates within Visual Studio. Nevertheless,
our experience with the development of the two plug-ins made us
realize that, as expected, neither of the two platforms provided all
the functionality we needed to develop BERT. More generally, our
experience allowed us to identify a set of important features that
plug-in development frameworks should provide to support the in-
tegration of program analysis and testing techniques. We summa-
rize our findings in the next section.

!"#$%&%'())#'#*&
+,#'-.+$/&

0%-.1&2$-34/(/5&
6$/%'78#$%-.+$&

9#/.$)5&:#;7))($)5&
<#%'(1/&1+33#1.+$&

!"#$

%&'()*+$

='+>#1%&#"#$%/&?&
-'.@-1%/&

A+8,(3#B.8#&
($@+'8-.+$&

C7$B.8#&
6$@+'8-.+$&

D'-,E(1-3&
F#-%7'#/&

=37)B($&
:#"#3+,8#$%&

/7,,+'%&

6$,7%5&C#,+'%5&
A+$G)7'-.+$&

%&'()*+$,-.-&/0-1$

Figure 2: IDE’s features for supporting plug-ins.

4. IDE SUPPORT FOR PROGRAM ANAL-
YSIS AND TESTING PLUG-INS

Based on our experience developing BERT on two different IDE
platforms, we identified some features that IDEs should support
for the development of testing and analysis plug-ins. In this sec-
tion, we discuss these features divided into several categories. To
support the discussion, Figure 2 provides a graphical depiction of
the features, and Table 1 summarizes them, along with information
on how we used them and some concise comments on portability
issues we encountered related to the features.

4.1 Project Artifacts and Events
Analysis and testing plug-ins work on a number of project ar-

tifacts, including code—either in source or compiled form—and
configuration files. Therefore, such plug-ins should be able to eas-
ily access and modify these project artifacts. Plug-ins also need to
be aware of software development activities, so that they can per-
form tasks that are dependent on a specific activity. Luckily, this
aspect is usually well supported in existing IDEs, and plug-ins can
be invoked in correspondence to a project activity through event no-
tifications (e.g., when a user opens a file, move to a specific point
in the code, compiles a project, runs a set of tests). This kind of
event-driven programming allows plug-ins to perform their tasks
right after the activity occurs.

4.2 Static Information
When accessing project artifacts, plug-ins must be able to re-

trieve different kinds of information. We list some examples of
static information about a project that plug-ins may need to access.

Intermediate representations. Most IDEs perform at least
basic syntactic checks on programs. To this end, they typically
build Abstract Syntax Trees (ASTs) for the programs. Plug-ins can
directly analyze such intermediate representations or, more typi-
cally, use them to derive other information, such as control- and
data-flow graphs, for supporting more sophisticated analysis.

Program differencing. Plug-ins may need information on pro-
gram differences to perform various kinds of analysis. For exam-

ple, program-change information may be used to perform change
analysis or, matched with dynamic information, perform regression
testing tasks on evolving systems. IDEs connected to source con-
trol systems, such as CVS or SVN, can provide information about
the change history. IDEs can also provide change information for
two versions not yet committed to a repository.

Instrumentation. Plug-ins that perform dynamic analysis typi-
cally need to add probes (i.e., snippets of code) to a program, or
even to modify certain statements. This type of code instrumen-
tation is commonly used to perform tasks such as runtime moni-
toring, dynamic memory protection, or logging. (We consider in-
strumentation in this section because it operates on static artifacts.)
IDEs may support instrumentation by providing access to internal
information on the programs, such as ASTs, or by allowing a plug-
in to freely access and modify a project’s code (e.g., through the
use of an external library).

Build parameters. Although this is a more mundane aspect,
many analysis and testing plug-ins need to be able to read and mod-
ify the parameters passed to the compiler. For Java programs, for
example, a plug-in might want to update the build path to load a
third party library that is used by the instrumented code. Similarly,
a plug-in might need to control a compiler option for getting ac-
cess to dynamic information, as discussed in the next section. It is
therefore important for an IDE to give access to these parameters
to a plug-in through some programmatic interface.

4.3 Dynamic Information
Besides collecting static information about a project, plug-ins

may also need to gather dynamic data, that is, data collected at
runtime, while the program is executing. Similarly to what we did
in Section 4.2, we provide examples of dynamic information that
may be needed by a plug-in and of the functionality that a plug-in
may require to gather such information.

Test execution. One common need for plug-ins that support test-
ing related activities is the ability to execute test cases from within
the IDE. In more general terms, plug-ins that collect any sort of dy-
namic information normally need to run the program whose infor-
mation is being collected. This functionality is typically provided
by modern IDEs, either through the integration of testing frame-
works, such as JUnit or NUnit, or through specific mechanisms,
such as application launchers in Eclipse.

Metrics. Obtaining runtime information from an execution is cru-
cial for plug-ins that perform dynamic analysis. Metrics are gen-
erally collected with suitable instrumentation that is added to pro-
grams, as described earlier. Such metrics can be of several types,
based on the data they collect. For example, code coverage com-
putes which elements in the source code (e.g., statements, branches)
are exercised by a given execution or set of executions. Coverage
information can be used by plug-ins to report untested parts of the
program or to perform further analysis (e.g. fault localization). An-
other example is code profiling data, which measure the number of
times an event (e.g., the execution of a statement) occurred. IDEs
often contain profiling tools that provide such information.

Debugging information. Plug-ins may also need to interface
with a debugger to assist debugging activities by providing more
information to developers. This information may, for instance, in-
clude details from the current and past executions to give develop-
ers more insight about the program’s behavior.

Table 1: Features needed to support testing and analysis plug-ins, how we used them, and comments on their portability.
IDE feature Usage in BERT Portability comments
Project Artifacts and Events Capture save and build events, ac-

cess build files.
Event notification and access to project artifacts are well supported,
although in very different ways, in both IDEs.

Static Information Find program differences, instru-
ment code.

Both IDEs provide limited information and must typically be com-
plemented by third-party libraries and tools.

Dynamic Information Execute automated tests, collect
runtime metrics.

Both IDEs provide a mature infrastructure for test execution. Met-
rics collection is mainly dependent on static instrumentation per-
formed using third-party libraries.

Graphical Features Input configuration, show results
to the user.

The two IDEs have different GUI-interaction mechanisms, but suit-
ably defined data formats can be reused.

Plug-in Development Support Use development and debugging
features.

The two IDEs provide similar plug-in development environments
and features. Documentation on APIs is often outdated or incom-
plete in both IDEs.

4.4 Graphical Features
Plug-ins must interact with users to receive inputs and provide

them with information they generate. Extensible IDEs typically
support this types of interactions in several ways. In particular,
IDEs provide mechanisms to trigger a plug-in’s functionality from
different contexts. (For example, a plug-in’s feature can be launched
from an object’s contextual menu.) And the output of a plug-in can
typically be presented using different views provided by the IDE.
These views include, among others, in-editor highlighting, infor-
mation dialogs and windows.

4.5 Plug-in Development Support

Development. Since plug-ins are also software, they are devel-
oped just like any other software project within the IDE. To suc-
cessfully implement a plug-in, developers need to be familiar with
IDE features and APIs that the plug-in can leverage. Because these
APIs can be extensive, it is essential for the API documentation
of a plug-in development framework to be complete, clear, well
organized, and easily accessible. Sample code and informal doc-
umentation in the form of blogs also help developers understand
and use the IDE features in their plug-ins. However, such exter-
nal documentation tends to be less rigorous and can easily become
outdated, so it cannot replace the information found in the official
documentation of the IDE. If such documentation is not available,
or difficult to access and consume, developers may re-implement
features that already exist or unnecessarily include third-party li-
braries, which can result in code that is more complex and, more
generally, in wasting resources. When documentation is missing
or incomplete, another (more subtle) issue is that developers may
mistakenly use unpublished internal APIs. This practice, which is
unfortunately fairly common, very often results in failures of the
plug-in after an update of the IDE or its libraries.

Testing, Debugging, and Maintenance. To help develop-
ers test, debug, and maintain their plug-ins, both Eclipse and Visual
Studio provide the possibility of launching a separate test instance
of the IDE that loads the plug-in and can be monitored from the pri-
mary IDE instance. This is essential during plug-in development,
as it helps developers exercise their plug-ins without having to go
through the lengthy process of deploying and installing them.

5. CONCLUSION
Modern IDEs have evolved into complex environments that pro-

vide an increasingly large set of features to support most aspects of
software development. In addition to their core features, IDEs also

provide developers with the possibility of extending such features
through the development of plug-ins. In this paper, we focus on the
support provided by modern IDEs to the development of program-
analysis and software-testing plug-ins. To this end, we start from
our experience with the development of a specific plug-in that sup-
ports automated regression testing for two IDEs: Eclipse and Visual
Studio. (We developed the plug-in first for Eclipse and later ported
it, with some significant modifications, to Visual Studio.)

We then identify, based on our experience, a set of characteris-
tics that should be provided by an IDE to suitably support testing
and analysis plug-ins. This set of characteristics includes, among
others, the ability of plug-ins to access various project artifacts,
gather different kinds of static and dynamic information, and lever-
age graphical capabilities of the IDE.

As we also stressed in the paper, our goal is not to be compre-
hensive, which would not be possible given the space available, but
rather to provide a starting point for a discussion on this topic and
on the more general issue of plug-in support within modern IDEs.

6. REFERENCES
[1] E. Clayberg and D. Rubel. Eclipse: Building Commercial-Quality

Plug-ins (2nd Edition) (Eclipse). Addison-Wesley Professional, 2006.
[2] W. Jin, A. Orso, and T. Xie. Automated behavioral regression testing.

In Proceedings of the 2010 Third International Conference on
Software Testing, Verification and Validation (ICST 2010), ICST ’10,
pages 137–146, Washington, DC, USA, 2010. IEEE Computer
Society.

[3] W. Jin, A. Orso, and T. Xie. Bert: a tool for behavioral regression
testing. In Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on the Foundations of Software Engineering
(FSE 2010), pages 361–362, New York, NY, USA, 2010. ACM.

[4] Microsoft Corporation. Microsoft visual studio 2010 - the official site
of visual studio 2010.
http://www.microsoft.com/visualstudio/en-us, Jan.
2011.

[5] C. Pacheco and M. D. Ernst. Randoop: feedback-directed random
testing for java. In Companion to the 22nd ACM SIGPLAN conference
on Object-oriented programming systems and applications
companion, OOPSLA ’07, pages 815–816, New York, NY, USA,
2007. ACM.

[6] The Eclipse Foundation. Eclipse - the eclipse foundation open source
community website. http://www.eclipse.org/, Jan. 2011.

[7] Pex and Moles - Isolation and White box Unit Testing for .NET.
http:
//research.microsoft.com/en-us/projects/pex/,
2011.

[8] N. Tillmann and J. De Halleux. Pex: white box test generation for
.net. In Proceedings of the 2nd International Conference on Tests and
Proofs (TAP 2008), pages 134–153, 2008.

