
Cross-Platform Feature Matching
for Web Applications

Shauvik Roy Choudhary*, Mukul R. Prasad†, Alessandro Orso*

*Georgia Institute of Technology †Fujitsu Laboratories of America
Atlanta, GA, USA Sunnyvale, CA, USA

{shauvik | orso}@cc.gatech.edu mukul@us.fujitsu.com

ABSTRACT
With the emergence of new computing platforms, software
written for traditional platforms is being re-targeted to reach
the users on these new platforms. In particular, due to
the proliferation of mobile computing devices, it is common
practice for companies to build mobile-specific versions of
their existing web applications to provide mobile users with
a better experience. Because the differences between desk-
top and mobile versions of a web application are not only
cosmetic, but can also include substantial rewrites of key
components, it is not uncommon for these different versions
to provide different sets of features. Whereas some of these
differences are intentional, such as the addition of location-
based features on mobile devices, others are not and can
negatively affect the user experience, as confirmed by nu-
merous user reports and complaints. Unfortunately, check-
ing and maintaining the consistency of different versions of
an application by hand is not only time consuming, but also
error prone. To address this problem, and help developers
in this difficult task, we propose an automated technique
for matching features across different versions of a multi-
platform web application. We implemented our technique
in a tool, called FMAP, and used it to perform a prelimi-
nary empirical evaluation on nine real-world multi-platform
web applications. The results of our evaluation are promis-
ing. FMAP was able to correctly identify missing features
between desktop and mobile versions of a set of web appli-
cations, as confirmed by our analysis of user reports and
software fixes for these applications.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement—
portability, reverse engineering

General Terms: Software Maintenance, Software Testing

Keywords: Cross-Platform, Mobile Web

1. INTRODUCTION
Today’s users run software on a variety of platforms, in-

cluding desktop computers, mobile devices such as smart-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14, July 21-25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

phones and tablets, and even wearable embedded comput-
ing devices [11, 8]. In fact, desktop computers are rapidly
being supplanted by mobile devices as the preferred means
of accessing Internet content. Case in point, the market re-
search firm IDC predicts that, by 2015, more users will be
accessing the Internet from mobile devices than from their
personal computers [32]. This move to mobile platforms has
been fueled, in part, by the increasing computing power of
modern mobile devices, coupled with their rich interactive
user interface, portability, and convenience.

Because of this increasing prevalence of mobile devices
and platforms, most companies whose business largely de-
pends on web presence, build versions of their existing web
applications customized for mobile devices, so as to provide
mobile users with a better experience. This customization
is necessary, despite the inherently multi-platform nature
of web applications, due to the unique features of mobile
devices, such as their form factor, user interface, and user-
interaction model [33]. Therefore, developers commonly re-
target their web applications, sometimes substantially, to
make them more suitable for mobile platforms [9].

In spite of the inherent differences between desktop and
mobile platforms, and the resulting differences between desk-
top and mobile versions of a web application, end users ex-
pect some level of consistency in the feature set offered by
an application across all platforms. The World Wide Web
Consortium (W3C) standards committee, for instance, rec-
ommends the “One Web” principle for web browsing plat-
forms [37], which stipulates that web application users should
be provided with the same information and services irrespec-
tive of the device on which they are operating. Prominent
web service providers, such as Google [6] and Twitter [29],
follow this guideline. Figure 1 provides an illustrative exam-
ple involving the desktop and mobile versions of the popular
developer discussion forum stackoverflow.com. Although
there are substantial differences in the look and feel of the
website in the two versions, both versions share the same
core functionality: clicking on a question shows detailed in-
formation for that particular question in both versions, both
versions allow the user to sort the questions according to
different criteria (using tabs in one case and the order by
drop-down menu in the other), and so on.

In this context, the challenge for web developers is to de-
velop different versions of their applications that are cus-
tomized to suit the specific characteristics of the different
platforms, yet provide a consistent set of features and ser-
vices across all versions. To do this, one common strategy
used by developers is to create separate front-end compo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ISSTA’14, July 21–25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07...$15.00
http://dx.doi.org/10.1145/2610384.2610409

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *
A
E
C

82

Figure 1: StackOverflow.com on desktop (left) and mobile (right).

nents for desktop and mobile platforms, while keeping (as
much as possible) the same server-side implementation [9].

Despite the existence of several libraries and frameworks
for helping with this task (e.g., jQuery Mobile [15], Twit-
ter Bootstrap [30], or Sencha [28]), and even tools for mi-
grating existing web applications to mobile-friendly versions
(e.g., Mobify [22] or Dudamobile [7]), developers perform
much of these customizations by hand, which is time con-
suming and error prone. Furthermore, the different cus-
tomized versions must also be evolved in parallel, during
maintenance, which creates additional opportunities for in-
troducing inconsistencies. As a result, it is often the case
that different versions of a multi-platform web application
provide different sets of features. Some of these differences
are introduced on purpose because of the nature of the dif-
ferent platforms. (Location-based features, for instance, are
normally available on the mobile version of a web site but
not on its desktop version.) Some other differences, how-
ever, are unintentional and can negatively affect the user
experience. This problem is confirmed by numerous user re-
ports and complaints on the forums for many popular web
sites. To illustrate with a concrete example, some users of
the popular Wordpress web site (http://wordpress.org/)
were so frustrated with the problem of missing features on
the mobile version of the site (e.g., the inability to upload
media files) that they were ready to stop using the software
altogether (see Section 5).

To help developers address the challenges associated with
developing multi-platform web applications, in this paper we
propose a technique to automatically match features across
different versions of such applications. To do so, we first in-
troduce the notion of consistency between different versions
of a web application and define it in terms of correspon-
dence among features supported by the different versions.
We then propose a novel technique for matching features
across platform-specific versions of a given web application.

We defined our technique based on the intuition that, al-
though the front-ends of these platform-specific versions may
look substantially different, in most cases they rely on the
same back-end functionality. Specifically, if the platform-
specific customizations are typically restricted to the client
tier, with the server tiers mostly unchanged, exercising the
same feature on two different platforms should generate sim-
ilar communications between client and server in the two
cases. Our technique, therefore, identifies and matches the
features of a multi-platform web application by analyzing
the communication between client and server when the ap-
plication is used on different platforms. The technique con-
sists of four main steps: (1) record traces of the network
communication between client and server of platform-specific
versions of a web application, (2) abstract traces into a se-

quence of basic actions, (3) identify a subset of these traces
as features, and (4) match the features identified for each
platform-specific version of the web application to identify
matching and missing features across versions.

We implemented our approach in a tool called FMAP and
used FMAP to perform a preliminary evaluation of our tech-
nique on nine real-world multi-platform web applications.
The results of our evaluation are promising and motivate
further research in this direction. FMAP correctly identi-
fied cases of missing features between desktop and mobile
versions of the web applications considered, including cases
that were reported by users and cases that were later fixed
by developers. Moreover, FMAP was able to also handle
complex cases in which platform-specific versions of the web
application had a totally different look and feel. This con-
firms our intuition that client-server communication can be
used to characterize web-application features even in the
presence of significantly different front-ends.
The main contributions of this paper are:
• The introduction and definition of the notion of consis-

tency between different, platform-specific versions of a
web application.
• The definition of a technique for performing cross-platform

feature matching for web applications.
• The development of FMAP, a prototype tool that im-

plements our technique and is publicly available, together
with our experimental infrastructure, as a peer-reviewed
artifact of this paper (http://gatech.github.io/fmap).
• An empirical evaluation of our technique on nine real-

world multi-platform web applications.

2. WEB APP FEATURE MATCHING

2.1 Web Applications
Web applications follow a distributed, client-server com-

puting architecture. They are hosted on a particular web
server, connected to the Internet, and accessed by end users
on any browser of their choice, which may be running on
a variety of desktop and mobile platforms. Web standards
enable a developer to write once and make the application
available on such diverse platforms. In particular, the user
supplies the URL to the web browser and interacts with the
web application inside it. Behind the scenes, the browser
makes several requests to the server to fetch resources re-
quired to render the application for the user. These re-
sources are essentially of four types: 1) Data, in the form of
HTML or XML files, 2) Style information, such as cascading
style sheets, 3) Client-side code, in the form of JavaScript,
and 4) Binary files, such as images, audio, and video. Web
browsers follow standards set by W3C [31] to use these re-
sources when rendering the web application.

83

BlogHome Pages

Submit Post

CREATE POST

My Post ContentPost Body

Post Type

Post Title My Post Title

MakeMyPost.com

MakeMyPost.com

myUser

Login

Login

Username myUser

MakeMyPost.com

Forgot Pass

Password *******

 Home

CREATE POST

MakeMyPost.com

My Post Title

My Post Content

Submit

Username

Password

Remember me

CREATE POST

MakeMyPost.com

My Post Title

My Post Content

Submit

Home
Blog
Post

 Home

Blog Pages

Figure 2: MakeMyPost.com Web Application for
Desktop (top) and Mobile (bottom) Browsers

2.2 Motivating Example
In this section, we introduce a simple web application and

use it as our motivating example to illustrate the challenges
and opportunities for matching features across different plat-
forms. Figure 2 shows our example (MakeMyPost.com), a
content management system that provides different front-
ends for desktop and mobile platforms.

When users first load the web application, they are taken
to the login screen. The desktop and mobile versions of
this screen have differences in their presentation as well as
function. For example, the widgets for the login button, the
alignment of the text boxes, and the corresponding labels
are different. Further, the “Remember me” check-box, the
“Forgot pass” button, and their corresponding functionality,
are not provided on the mobile view. The next “Home”
screen allows users to create a new post and is somewhat
different across platforms: 1) Navigation tabs present on the
desktop version are replaced by a drop-down menu on the
mobile version; 2) Radio buttons to select the “Post Type”
are missing on the mobile screen; and 3) The appearance of
the buttons is different across platforms.

In summary, although the core functionality of the desk-
top web app is substantially mirrored in the mobile version,
there are significant differences in the style of widgets, the
layout of various screens, and, on occasion, the actions re-
quired to access specific features. Thus, techniques based
on comparing presentation-level information alone, such as
screen layout and attributes of widgets [25], would not work
in this context.

Let us now consider the client-server network communica-
tion originating from both application versions when a post
is being created (i.e., a “create post” feature is being exe-
cuted). In this case, first the user authenticates herself to
the system from the login screen. She then navigates to the
home screen, where she submits the post content. The cor-
responding network requests for this sequence of actions are
shown in Figure 3. These requests are largely similar across
platform versions, albeit with some minor differences. The
first difference is in the requests involving client-side scripts
and style information (i.e., the requests on lines 3–8, point

to separate resources). Second, the requests made to the
server-side scripts differ both in the form data submitted by
the user and in the data generated by the application (e.g.,
the user and sid fields on line 9). However, the requests on
lines 9 and 11, which invoke the“login”and the“create blog”
services on the server, when considered together, uniquely
characterize the feature considered in the example, “create
post”, which is the same being invoked on both platforms.

The intuition behind our approach, presented in this pa-
per, is that by analyzing uses of a web application in terms
of the network traces they generate, we can abstract away
the irrelevant parts of the trace, such as the user data. Fur-
ther, by using the key actions that characterize these ab-
stract traces, we can successfully establish correspondence
between different invocations of the same features on differ-
ent platforms.

2.3 Terminology and Problem Definition
In this section, we define the terminology used for describ-

ing our approach in the next section. The terms are defined
specifically in the context of the network level communica-
tion between the client- and the server-side of web applica-
tions, and may carry different meanings in other contexts.

Definition 1 (Service). A service is an atomic func-
tionality offered by a web server to its clients.

In the MakeMyPost.com example, two services offered by
the server are “login” and “create blog”.

Definition 2 (Request). A request is a call made from
the client browser to the server to obtain a resource to be
displayed, exercise a service, or access a new page or parts
thereof.

Definition 3 (Response). A response is the reaction
of the server to a request from the client.

Definition 4 (Trace). A trace is an ordered sequence
of requests and responses that are generated as a user per-
forms a set of actions on the application.

Figure 3 shows a trace from the desktop and mobile ver-
sions of MakeMyPost.com corresponding to the“create post”
feature. In this example, each of the traces contains 6 re-
quests and 6 responses. Note that only the requests corre-
sponding to lines 9 and 11 invoke services (“login” and “cre-
ate blog”), while the others obtain resources to be displayed
or access a new page or parts thereof.

Definition 5 (Feature). A feature is the functional-
ity exercised by executing a specific set of services, provided
by the web application, in a specific order.

A feature is exercised by all use cases for the application
that invoke the services corresponding to the feature in the
right order. Thus, a feature can be seen as an abstract use
case that describes this set of concrete use cases. The traces
shown in Figure 3 exercise the “create post” feature. Other
variations of this use case, interleaved with arbitrary naviga-
tion actions on the UI, would correspond to the same feature,
as would use cases creating multiple posts. However, a use
case for logging in and simply browsing blog posts, without
creating a new one, would map to a different feature (since
it does not exercise the service for creating a post).

Definition 6 (Action). An action is a request with
the user data and platform-specific resource references ab-
stracted away.

84

1. REQUEST: GET /index.php
2. RESPOSE: 200 OK, ’text/html’

3. REQUEST: GET /style.css
4. REPONSE: 200 OK, ’text/css’

5. REQUEST: GET /logo.png
6. REPONSE: 200 OK, ’image/png’

7. REQUEST: GET /script.js
8. REPONSE: 200 OK, ’text/javascript’

9. REQUEST: POST /login.php user=user1&pass=..&sid=w2s31
10. RESPONSE: 200 OK, ’text/html’

....
11. REQUEST: POST /create_blog.php title=..&content=..
12. RESPONSE: 200 OK, ’text/html’

1. REQUEST: GET /index.php
2. RESPOSE: 200 OK, ’text/html’

3. REQUEST: GET /mobile_style.css
4. REPONSE: 200 OK, ’text/css’

5. REQUEST: GET /logo_small.png
6. REPONSE: 200 OK, ’image/png’

7. REQUEST: GET /mobile_script.js
8. REPONSE: 200 OK, ’text/javascript’

9. REQUEST: POST /login.php user=myUser&pass=..&sid=d4sW2
10. RESPONSE: 200 OK, ’text/html’

....
11. REQUEST: POST /create_blog.php title=..&content=..
12. RESPONSE: 200 OK, ’text/html’

Figure 3: Network trace from MakeMyPost.com on desktop (left) and mobile (right).

An action is essentially an abstract request. In our mo-
tivating example, the login request (line 9) can be made
from different platforms, in different traces, and with dif-
ferent usernames and passwords. However, all such distinct
requests access the same login service of the web application
on the server, and thus correspond to the same action.

Definition 7 (Feature Equivalence). Two applica-
tion features, each from a different platform, are said to be
equivalent if they correspond to exercising the same set of
services on the server side and in the same sequence.

Given this definition, the two traces shown in Figure 3
instantiate the equivalent “create post” feature, which corre-
sponds to the “login” and “create blog” services on the desk-
top and mobile platforms. We would like to automatically
establish such an equivalence across all the features available
on each platform.

More precisely, given a web application with two versions
W1 and W2, implemented on two platforms P1 and P2, we
would like to establish a mapping of features between W1

and W2. As a starting point for analyzing the user inter-
faces (UI) of W1 and W2, we assume that we are given sets
of traces T1 and T2 generated from W1 and W2. The only
assumption we make about trace sets T1 and T2 is that they
should exercise the features available on the respective in-
terfaces. For example, T1 and T2 need not be minimal sets
or correspond to each other in any way. In fact, the trace
sets do not even need to represent all the features of each
UI, as our technique simply matches the features that are
actually present in the trace sets. (Obviously, however, we
can identify and match more features with more complete
trace sets.) These traces could be drawn from a variety of
sources, such as from user-session data, from test-cases writ-
ten for each application version, or even by systematically
crawling each web application [20]. Our technique makes
no assumption regarding the sources of these traces either.
Based on this, we can formally pose the feature matching
problem as follows.

Definition 8 (Feature Mapping Problem). Given
two versions W1 and W2 of a web application, implemented
on two different platforms, and two sets of traces T1 and
T2 drawn from W1 and W2, the feature mapping problem
consists of identifying (1) two sets of features F1 and F2

represented in traces T1 and T2 and (2) a one-to-one relation
M ⊆ F1 × F2, such that for any features f1 ∈ F1 and
f2 ∈ F2, (f1, f2) ∈M iff features f1 and f2 are equivalent.

The feature mapping problem, as posed above, presents
the following challenges:

• Action Recognition: Although each of the the requests
contained in the raw traces (trace sets T1 and T2) appear

distinct, they are in fact instances of a small set of actions
available on the UI of the web application. Therefore, re-
quests need to be appropriately abstracted and recognized
as the appropriate action.

• Trace Set Canonicalization: Since we make no as-
sumptions on the traces present in the provided trace sets,
it is quite conceivable that the trace sets contain several
traces representing a given feature. The trace sets must
therefore be canonicalized into a minimal set with pre-
cisely one representative for each feature.

• Feature Mapping: The minimal trace sets obtained in
the previous stage must be mined for features that need
to be mapped. Note that the requests (or actions) do
not directly specify whether they represent a call to nav-
igate the UI, procure presentation resources, or actually
exercise a service. The identification of service invoca-
tions, and hence identification of features, must therefore
be performed by indirectly leveraging other information.

3. OUR TECHNIQUE
In this section, we present our technique for accurately

identifying matched and unmatched features across mobile
and desktop versions of a web application. As stated in Sec-
tion 2.3, we use a set of traces derived from client-server
communication of each version as the basis for performing
this matching. In our view, this interface is most appropri-
ate for this task because it naturally abstracts away many
presentation-level differences, while preserving the functional
structure of the use case (i.e., set of actions) corresponding
to the trace. Further, it allows us to develop our solution
as a black-box technique, which is much easier to deploy
and maintain than, for example, a (hypothetical) white-box
technique based on analysis of server-side artifacts. Also,
the use of traces is well suited to our application since the
features we are attempting to compare are in fact abstract
traces. Thus, more elaborate representations of the client
user interface, such as finite-state machine models [20, 26]
or event-based models [19] would not be particularly useful
in this context.

Figure 4 presents a high-level view of our proposed tech-
nique. The first step of the technique is to collect a set of
network-level traces from the two web application versions.
These trace sets form the basis of the subsequent feature
mapping. The core feature mapping is largely independent
of this trace collection and consists of three main steps that
mirror the three challenges discussed in Section 2.3. In the
first step, the network traces are mined to identify requests
that are instances of the same action. In this phase, all
requests are abstracted and mapped to a small alphabet of

85

Trace
Extraction

Action
Recognition

Feature
Matching

A
X
B
Y
C
D

A

B

C
D

A
Q
R
S

A
Q
R
S

M
N
O
P

U
V
W

Matched
Features

Unmatched
Features

Traces FeaturesPlatforms

A
X
B
Y
C
D

A
B
C
D

A
Q
R
S

A
Q
R
Q
R
S

M
N
O
P

U
V
W

Labeled Actions

A
B
C
D

A
Q
R
S

Trace Set
Canonicalization A

X
B
Y
C
D

A
B
C
D

A
Q
R
S

A
Q
R
Q
R
S

M
N
O
P

U
V
W

A
B
C
D

A
Q
R

S

Figure 4: High-level overview of our approach.

actions. In the next step, the abstract traces from each plat-
form are clustered and canonicalized into a core set of traces
with precisely one representative for each potential feature
supported on that platform. In the final step, the canon-
icalized traces from the desktop and mobile platforms are
compared against one another to find correspondences be-
tween features. The matching from this step produces two
results: (1) the mapping between the matched features of
the application across the two platforms and (2) the fea-
tures that did not match and are possibly missing in the
desktop or mobile version of the web application.

In the remainder of this section, we will explain the details
of each of these steps. We will use our motivating example
from Section 2.2 to illustrate key concepts and operations.

3.1 Trace Extraction
The goal of this step is to automatically capture network-

level traces of the web application from both desktop and
mobile platforms. A trace is captured as a user is inter-
acting with the web application and performing meaning-
ful actions to access its features. For every set of actions
that the user performs, the technique captures the client
request-server response pairs and metadata related to each
pair. In particular, for HTTP requests, the technique col-
lects and saves the URL path (path) and request parameters
(params). The latter contains the information sent in the
request as a key-value pair. For each HTTP response header,
the technique saves the response code and the MIME type
of the resource returned. The response code contains the
status of the response, which can be indicative of success,
redirection, or error. This information is used in the next
step to determine how the request information should be
used to recognize actions. Figure 3 shows several examples
of such request-response pairs.

3.2 Action Recognition
This step aims to identify intrinsically similar requests

that appear in different network traces and recognize them
as instances of the same action. Algorithm 1 presents the
main procedure of this step, RecognizeActions, which takes
a set of network traces collected on the two platforms consid-
ered and returns a set of labeled actions. This step involves
three operations: (1) Trace simplification (TraceSimplify),
which converts traces into sequences of keyword sets; (2)
Action clustering (ClusterActions), which clusters related
requests into the same action group; (3) Action canonical-
ization, which assigns the same symbols to nearly similar
actions across different platforms.

3.2.1 Trace Simplification
The goal of this step is to extract a set of keywords from

each request, which are later used to group similar requests.

Algorithm 1: Action Recognition

/* RecognizeActions */
Input : Td,Tm: Set of traces from desktop and mobile
Output: Ad,Am: Set of labeled actions for desktop and mobile

1 begin
2 Cd ← ClusterActions(Td)
3 Cm ← ClusterActions(Tm)

// Action Mapping

4 Map← { }
5 foreach c1 ∈ Cd do
6 foreach c2 ∈ Cm do
7 if isSimilar(c1, c2) then
8 if c1 ∈Map or c2 ∈Map then
9 c1← c1 ∪Map.remove(c1)

10 c2← c2 ∪Map.remove(c2)
11 Map.add(c1 7→ c2)
12 Ad ← [],Am ← []
13 foreach (c1, c2) ∈Map do
14 action← getNewSymbol()
15 Ad.assign(c1, action)
16 Am.assign(c2, action)
17 foreach c1 ∈ Cd and c1.action == null do
18 Ad.assign(c1, getNewSymbol())
19 foreach c2 ∈ Cm and c2.action == null do
20 Am.assign(c2, getNewSymbol())
21 return Ad,Am

/* ClusterActions */
Input : T: Set of traces
Output: C: Cluster of actions

22 begin
23 K ← TraceSimplify(T)

// Level 1 Clustering

24 L1Cluster ← SimpleCluster(T, url path equals)
// Level 2 Clustering

25 L2Cluster ← { }
26 JD ← {JaccardDistance(k1, k2) | k1, k2 ∈ K}
27 underCluster ← split(L1Cluster, size == 1)
28 overCluster ← split(L1Cluster, size > 1)
29 L2Cluster.add(AggloCluster(underCluster, JD, (<, t1)))
30 foreach c ∈ overCluster do
31 L2Cluster.add(AggloCluster(c, JD, (>, t2)))
32 return L2Cluster

/* TraceSimplify */

Input : T: Set of network traces = {T1, T2, .., Tn}
Output: K: Set of keyword tuple sequences = {k1, k2, .., km}

33 begin
34 K ← ()
35 foreach T ∈ T do
36 foreach 〈request, response〉 ∈ T do
37 while isRedirect(response.code) do
38 response← followRedirect(response)
39 if isCodeOrData(response.type) then
40 k ← getKeyws(request.path, request.qs)
41 K.add(k)
42 return K

As shown in the algorithm (lines 33–42), the TraceSimplify
function takes a set of network traces and returns a set of
keyword-tuple sequences, each corresponding to a provided
trace. To achieve its goal, the technique first removes re-
dundant requests occurring due to HTTP redirection and
assigns the MIME type of the final resource to the originat-
ing request (lines 37–38). This MIME type is used by the

86

function call isCodeOrData to consider requests related to
client-side code or data resources only (line 39). All requests
to resources related to style or binary files are hence ignored
in this step. This is essential, as the technique aims to ab-
stract away information that relates to the visual rendering
of the page. For our motivating example (Figure 3), this step
would ignore requests on lines 3 and 5 for both platforms.

Next, the technique extracts all the words present in the
request URL path and request parameters of these resources
(line 40). Our notion of a word is a sequence of alphabets
separated by the reserved URL characters [2]. This allows
us to ignore numeric values as well as randomly generated
tokens or session identifiers. We also ignore the words be-
longing to a list of known file extensions [16]. The extracted
words are further simplified by converting them to their
lemmas using Lemmatisation [18]. This process converts
different suffixed or prefixed forms of the same word into
one, thereby making them standard across different occur-
rences. The result of this step is a sequence of keyword
tuples for each trace. For example, the sequence corre-
sponding to the desktop trace of our example application
is [(‘index’), (‘script’), (‘login’, ‘user’, ‘pass’,

‘sid’), (‘create’, ‘blog’, ‘title’, ‘content’)].

3.2.2 Action Clustering
This step is used to map intrinsically similar requests onto

the same action. This is done by performing a two-level clus-
tering, as shown in the ClusterActions routine. Assuming
a blackbox view of the server side from the client, the URL
path is used to indicate the service which is invoked. Thus,
the first level of clustering combines all requests made from
one platform with the same URL path into the same cluster.
Function SimpleCluster (line 24) takes the traces and uses
this URL-equality notion to cluster the requests.

After this clustering is performed, another level of clus-
tering is needed to further refine the clusters based on other
URL parameters. This second level of clustering (lines 25–
32) identifies (1) over-clustered requests, which result from
different requests being clustered together, and (2) under-
clustered requests, which are similar requests put into sepa-
rate clusters. A practical case of over-clustered requests is
when a request parameter is used reflectively to determine
the server-side function to be invoked. Under-clustered re-
quests, conversely, can be illustrated by two requests invok-
ing the same service, but whose URL path contains dynamic
fields possibly entered by the user or generated by the ap-
plication.

To perform this second level of clustering, we use agglom-
erative clustering [18], which is a kind of hierarchical cluster-
ing that uses a distance metric to iteratively merge two items
by varying the threshold on their distance. Specifically, we
use the Jaccard distance metric [13], which is defined as:

JaccardDistance(a, b) = 1− |words(a) ∩ words(b)|
|words(a) ∪ words(b)|

Here, (a, b) are two requests, and words(a) and words(b)
are the respective set of keywords computed in the trace
simplification step. The Jaccard distance measures the dis-
similarity between the keywords as a ratio in the [0, 1] range.

The technique considers all single item clusters as under-
clustered requests and the remaining larger clusters as over-
clustered requests. For the clustering, we chose a low thresh-
old t1 and a high threshold t2 (empirically set to 0.3 and 0.8,
respectively, in our evaluation).

For the agglomerative clustering, the condition (<, t1) is
used for under-clustered requests to cluster nearly similar
requests together. Similarly, condition (>, t2) is used for
over-clustered requests to break apart requests that are very
different. At the end of this step, we obtain clusters where
requests that are likely to correspond to the same action
have been grouped together.

3.2.3 Action Mapping
To achieve the overall goal of feature mapping, in this step,

similar actions across the desktop and mobile versions are
grouped together. As shown on lines 4–11, this is done by
function isSimilar, which checks the similarity of request
clusters across the two platforms to establish a mapping.
This function applies the Jaccard distance metric to the set
of words associated with the requests of each cluster by using
the low threshold (t1) from the previous step. If one clus-
ter matches a cluster from the other platform, a mapping is
added between those two clusters. If a cluster gets mapped
to multiple clusters on the other platform, such clusters and
any existing mapping are merged. Finally, each unique clus-
ter across both platforms is assigned a unique symbol from
the alphabet of actions. In terms of our motivating example,
the requests on lines 1, 7, 9, and 11 will each be assigned a
unique, but identical across the two platforms, symbol.

3.3 Trace Set Canonicalization
The goal of this step is to identify and cluster traces that

correspond to the same feature. One trace from each cluster
can then be retained as the representative of the feature,
discarding the others. (We will refer to this chosen trace as
a feature instance or simply a feature.) The output of this
step consists of two sets of feature instances, one for each of
the two platforms.

This canonicalization is performed by reducing each trace
down to the most elemental form of the use case it repre-
sents. To do this, our technique finds and removes all re-
peated action subsequences within each trace. Intuitively,
these repeated action subsequences would correspond to re-
peated portions of a basic use case, such as creating multiple
blog posts in the context of our motivating example.

To find such repeated sequences, we use an algorithm that
finds tandem repeats—a popular technique used in biology
to find repeated subsequences in DNA sequences [1]. In
general, a tandem repeat is a set of two or more contiguous
repetitions of a sequence. The algorithm iteratively finds the
occurrences of such repeats and replaces them with a single
instance of the sequence. After this reduction for each trace
in our trace sets is done, any duplicate traces thus created
are removed from the trace set, thereby retaining only one
feature instance per potential feature.

As an example, consider the sequences (AQRQRS, AQRS) in
Figure 4. The technique will first replace the tandem repeat
of subsequence QR in the first trace with a single QR. The
resulting two sequences would then be identical and hence
merged into the same feature instance, as shown in the next
step in the figure.

3.4 Feature Matching
The goal of this step is to find a one-to-one correspondence

between the two feature instance sets (from the desktop and
mobile versions of the application) created in the previous
step. This implies a matching of the corresponding features

87

1

2

3

4

5

1

2

3

4

Fd Fm

0.9

0.2
0.8

0.3
0.7

0.2
0.3

0.7

1

2

3

4

5

1

2

3

4

Fd Fm

0.9

0.8

0.7

0.7

Figure 5: Bipartite graph of features

represented by each feature instance. We formulate this fea-
ture instance matching problem as a maximum weighted bi-
partite matching (MWBM) problem, which is a well known
problem in the field of operations research. Given (1) a bi-
partite graph G = (V,E) with bipartition (D,M) and (2) a
weight function w : E 7→ R, the MWBM problem consists
in finding a matching of maximum weight, where the weight
of a matching M is given by w(M) =

∑
e∈M w(e). To ad-

dress this problem, we leverage the popular and well-known
Hungarian algorithm [17, 23], which has been successfully
applied to a number of instances of this problem.

In our formulation of the MWBM problem, we create the
bipartite graph G with one vertex for each feature instance.
Thus, the set of vertices D and M , forming the bipartition,
denote the feature instances from the desktop and mobile
versions, respectively. The edges E between D and M de-
note the possibility of matching the corresponding features,
and the weight on an edge denotes the profit 1 of match-
ing those two features, that is, the likelihood that they are
correct matches.

Figure 5 illustrates this problem formulation. On the left
side is an instance of the problem, where features 1–5 from
the desktop platform (Fd) are connected to features 1–4 from
the mobile platform (Fm) through edges, and labels indicate
the profit associated with each edge. On the right side of
the figure is the solution to the MWBM problem, where
only the edges contributing to the maximum overall profit
are retained. This matching is the final outcome of the al-
gorithm and provides a list of matched features, which is
{(1, 1), (2, 2), (3, 3), (5, 4)} for the example. The figure also
shows features that were unmatched (e.g., feature 4 in Fd).

A key step in our formulation is the assignment of weights,
or profit values, to the edges of the bipartite graph. This
value should reflect the likelihood that two feature instances,
each represented by a sequence of actions, match. Our so-
lution involves assigning weights to each action in the al-
phabet and then computing the profit value of a pair of po-
tential matching action sequences as the additive weight of
the heaviest common subsequence between them. We discuss
this approach in the following sections.

3.4.1 Assigning Weights to Actions
Since we cannot directly distinguish, in a trace, service

invoking actions from actions that perform navigation or re-
quest presentation resources, we cannot use Definition 7 to
compute feature matchings. However, we exploit the obser-
vation that actions that exercise specific services would only
be observed in use cases that involve that service. Thus,
rare actions and unique action sequences can be, and often
are, the signature of a feature.

1A profit function is the inverse of a cost function. Instead of
minimizing the cost, the goal here is to maximize the profit.

Our technique, therefore, assigns a weight to each action,
based on the number of times it occurs across different fea-
ture instances on that platform. In particular, we use the
following formula to compute the weight of an action:

ω(a) = 1− count(F, a)

|F |
In the formula, ω(a) is the weight of the action denoted
by symbol a, count(F, a) is a function that computes the
number of feature instances containing a, out of all feature
instances (F), and |F | denotes the cardinality of feature in-
stances. If an action occurs in all features, its weight is
therefore zero. However, if an action occurs in fewer fea-
tures, it is assigned a weight closer to 1. Once these weights
are assigned, they are used to compute the heaviest common
subsequence between a given pair of traces.

3.4.2 Heaviest Common Subsequence
Given two sequences, the Heaviest Common Subsequence

(HCS) problem aims to find a common subsequence that
maximizes the additive weight of the items in such subse-
quence [14]. The HCS problem can be defined formally using
the following (recursive) formula:

Wi,j =

 0 if i = 0 or j = 0
Wi−1,j−1 + fi,j if i, j > 0 and xi = yj
max(Wi,j−1,Wi−1,j) if i, j > 0 and xi 6= yj

In the formula, Wi,j is the weight of hcs(x[1..i], y[1..j]),
that is, the weight of the heaviest common subsequence be-
tween the prefix of sequences x and y of lengths i and j,
respectively. The weight function f , which is used in HCS,
considers the weights of actions from both platforms and
is computed as fi,j = ω(xi)× ω′(yj), where (xi, yj) are ac-
tions in the features (x, y) at positions (i, j), respectively,
and (ω, ω′) are the weight functions for the two platforms.

Our technique computes the HCS weights for all pairs of
features across the desktop and mobile platforms and stores
it in an N ×M matrix, where N and M are the number of
features on the desktop and mobile platforms, respectively.
As explained earlier, this weight corresponds to the likeli-
hood of a match between the corresponding features.

4. EVALUATION
To assess the usefulness and effectiveness of our technique,

we implemented it in a tool called FMAP and used it for
our experimentation. Our evaluation addresses the following
research questions:
RQ1: How effective is FMAP in recognizing web applica-

tion actions across different traces and platforms?
RQ2: How effective is FMAP in matching features between

the desktop and mobile versions of real web applications?
To establish a baseline for evaluating RQ2, we explored ex-
isting solutions and found that feature matching is mostly
done manually. Therefore, we used as a baseline a tech-
nique that shares the overall framework of our proposed so-
lution but lacks some of its sophistication: (1) it uses the
URLs in network requests as the sole basis of recognizing
actions; (2) it only eliminates, in the trace set canonicaliza-
tion step, traces that have exactly identical action sequences
as other traces on the same platform; and (3) it simply uses
edit distance as the cost function, in the MWBM problem
formulation, to establish feature matching across two plat-
forms. We believe that these represent reasonable baseline
design choices, as URL-based service identification is com-
monly used by web developers to report runtime details of

88

a web application (e.g., web analytics and traffic monitor-
ing). Similarly, edit distance is a commonly used metric for
comparing and matching strings and sequences.

In the following sections, we describe in detail our imple-
mentation, subject applications, experiment protocol, and
results.

4.1 Tool Implementation
Our prototype tool, FMAP, consists of two components.

The first component performs trace extraction and is im-
plemented as an extension for the Chromium web browser
(http://chromium.org). It allows users to select whether
they want to use a desktop or mobile browser. To em-
ulate the mobile browser, it alters the HTTP user agent
string in the network requests to a mobile phone browser’s
user agent. The network request-response information is
captured through the browser’s debugger interface, and the
trace generated is saved to a file, which is named with the
use case name obtained from the user. The extension also
saves screenshots of the visited web application screens to
facilitate our evaluation.

The next component of FMAP is written in Python and
implements the action recognition, feature identification, and
feature matching steps of the technique. To detect sev-
eral inflected forms of words as one, the words are reduced
to their root forms by using the WordNet lemmatizer [21]
in the Python natural language toolkit (http://nltk.org).
All metrics were computed using the corresponding methods
from the nltk.metrics package. We used the open source
python library, munkres (http://software.clapper.org/
munkres/), suitably modified to handle floating point prof-
its, to solve the MWBM problem.

4.2 Subject Applications
To perform a meaningful evaluation of our technique, we

selected nine web applications whose mobile and desktop
versions appear to be quite different (see Table 1). The
first six subjects are popular open source web applications
obtained from http://ohloh.net: wordpress v3.6, a web
blogging tool; drupal v7.23, a content management app;
phpbb v3.0, a bulletin board; roundcube v0.9.4, an email
client; elgg v1.8.16, a social networking app; and gallery

v3.0.9, a photo sharing app. These applications were con-
figured with specific mobile presentation plug-ins and set
up to run on a local web server. In particular, we used
the wordpress mobile pack v1.2.5, nokia mobile theme v6.x-
1.3 for drupal, artodia mobile style v3.4 for phpbb, mo-
bilecube theme v3.0.0 for roundcube, elgg mobile module
v2.0, and imobile theme v2.7 for gallery. The three other
subjects, wikipedia.org, stackoverflow.com, and twit-

ter.com, are public websites from the Alexa’s top website
list (http://www.alexa.com/topsites/). We chose these
sites in particular because they demonstrated significant dif-
ferences in appearance across platforms and were different
in nature from the open source applications we considered.

4.3 Experiment Protocol
To collect the experimental data for our evaluation, we

recruited five graduate students not involved with this re-
search. First, we had them install a fresh version of the
Chromium web browser to ensure that the collected data was
not corrupted by existing user sessions and extensions. Next,
they installed FMAP’s browser-extension component. We

then asked the students to study the user interface and func-
tionality of the different web applications, define as many use
cases as possible for them, and run the use cases they en-
visioned on either the desktop version or the mobile version
of the applications. We also asked the students to give the
traces generated for a use case a name that expressed the
intent of such use case.

We then fed the traces submitted by the students to both
FMAP and the baseline tool to compute the feature match-
ings. To evaluate the effectiveness of FMAP, we manually
analyzed the results and compared them against the use case
names provided by the users. We also checked the screen
dumps for the matched use cases when the provided use
case name was not descriptive enough. The results from our
analysis are presented in the next section.

4.4 Results
To answer RQ1, we ran FMAP on the subject traces and

analyzed the intermediate results generated by the action
recognition step. In particular, we obtained a list of all ac-
tion symbols and the clusters of requests corresponding to
them, and compared them against manually computed re-
sults. To report the quality of clustering, we use the F-score
metric [18], which considers both intra-cluster similarity and
inter-cluster difference. Since F-score is a weighted average
of both precision and recall of clustering, a higher F-score
value indicates better clustering. Table 1 shows the results
for RQ1 for both the desktop (D) and mobile (M) plat-
forms. For each application, the table shows its name, its
type, the total of number traces captured (#Traces), the
number of requests across all traces (#Requests), the num-
ber of actions recognized (#Actions), the computed F-score
for action recognition (Action F-score), and the number of
features identified (#Features). As the table shows, FMAP
was able to reduce, for the desktop platform, 2712 requests
to 454 actions, with an overall F-score of 97.8%. On the mo-
bile platform, FMAP reduced 1039 requests to 222 actions,
with an overall F-score of 99.6%. These actions were used
to discover 144 features on the desktop and 85 features on
the mobile versions of the web applications.

To address RQ2, Table 2 presents the effectiveness of
FMAP against the baseline tool considered. The table shows,
for each subject, the features matched by both techniques,
in terms of the number of matchings reported (Rep), true
positives (TP), false positives (FP), false negatives (FN),
true negatives (TN), and overall F-score of the matching re-
sult for both the desktop (D) and the mobile (M) platform.
In addition, for FMAP, we also report the sum of the miss-
ing features across both platforms (Mis), which we verified
manually, and the number of these features (Ack) that were
also either reported by end users or acknowledged/fixed by
developers in a later version. As shown in the table, FMAP
was able to successfully match features across the desktop
and mobile platforms for each of the subjects considered.
Specifically, it reported a total of 58 true matches with an
overall F-score of 86.3%. In comparison, the baseline tool
produced 31 true matches with an overall 51.5% F-score.

5. DISCUSSION
The results of our empirical study show that the action

recognition step of our technique can be effective in mapping
several requests to the same canonical action. For all nine
subjects, FMAP clustered similar requests while achieving

89

Table 1: Details of program subjects and action recognition.

Name Type
#Traces #Requests #Actions Action F-score #Features
D M D M D M D M D M

wordpress Blog 40 12 415 98 72 12 99.7% 100.0% 29 8
drupal Content 16 15 140 62 32 23 100.0% 100.0% 13 13
phpbb Forum 12 12 230 152 20 19 99.6% 99.3% 11 11
roundcube Email 11 13 144 169 20 24 99.8% 100.0% 6 7
elgg Social 13 9 225 121 39 27 100.0% 100.0% 9 7
gallery Media 37 4 390 117 77 14 99.9% 100.0% 31 4
wikipedia.org Content 60 22 709 162 67 40 99.7% 98.8% 11 10
stackoverflow.com Q&A 19 14 174 104 54 37 97.9% 98.9% 18 14
twitter.com Social 19 14 285 54 73 26 83.5% 99.2% 16 11
Total 227 115 2712 1039 454 222 97.8% 99.6% 144 85

Table 2: Results of feature matching compared to state-of-art.

Name
Features Matched (Baseline) Features Matched (FMAP)

Rep TP FP FN TN
F-score

Rep TP FP FN TN
F-score Mis Ack

D M D M D M D M D M D M D M D M D M D M

wordpress 8 8 3 3 5 5 2 1 21 1 48.0% 8 8 7 7 1 1 0 0 21 0 93.3% 21 15
drupal 12 12 12 12 0 0 0 0 0 0 100.0% 12 12 12 12 0 0 0 0 0 0 100.0% 0 -
phpbb 3 3 3 3 0 0 9 9 0 0 40.0% 10 10 10 10 0 0 1 1 0 0 95.2% 0 -
roundcube 10 10 4 4 6 6 0 0 0 0 57.1% 4 4 4 4 0 0 2 3 0 0 76.2% 0 -
elgg 9 9 2 2 7 7 4 0 0 0 30.8% 5 5 5 5 0 0 1 1 3 1 90.9% 0 -
gallery 0 0 - - - - - - - - - 3 3 2 2 1 1 1 1 26 0 66.7% 26 20
wikipedia.org 17 17 4 4 13 13 1 4 8 1 34.0% 7 7 7 7 0 0 1 1 3 2 93.3% 2 1
stackoverflow.com 13 13 3 3 10 10 4 1 1 0 32.4% 10 10 9 9 1 1 1 1 7 3 90.0% 3 1
twitter.com 0 0 - - - - - - - - 2 2 2 2 0 0 8 8 6 1 33.3% 4 3
Total 72 72 31 31 41 41 20 15 30 2 51.5% 61 61 58 58 3 3 15 16 66 7 86.3% 56 40

high F-scores on both desktop and mobile platforms. The
few errors in clustering can be attributed to the cases where
the requests contained many user supplied data, which re-
sulted in FMAP classifying them as separate actions in the
action clustering step. We noticed that, although FMAP
can remove a significant portion of such information in the
trace simplification step, it is limited by its blackbox view
of the application. Future improvements to this step can be
made by leveraging runtime information from the applica-
tion. In particular, dynamic tainting [4, 12] can be used to
track the sources user supplied data and remove them from
the requests before clustering them.

In the matching step, FMAP was effective in matching
features from all subjects with significantly higher F-score
than the baseline tool. The only exception is Drupal, for
which the baseline tool performed as well as FMAP. In this
case, the request URL paths could uniquely identify the fea-
ture being invoked, which is an ideal scenario for the base-
line tool but not common practice. By contrast, in the case
of Gallery and Twitter, the baseline tool could not compute
any matching, and hence, no results were reported for them.

The true negatives of the matching consist of features that
are reported as unmatched by FMAP and are indeed miss-
ing. Our analysis of the results in Table 2 revealed several
missing features that were also acknowledged by either de-
velopers or users of the applications. For our first subject,
Wordpress, we found that the users of the mobile toolkit
were frustrated with the absence of certain features in the
application [36]. Specifically, users complained about not
being able to upload media, assign categories to posts, or
administer their blog from the mobile version [35, 34]. Some
users even stated that they would stop using this software
because of these missing features. In the case of Gallery,
we found that its mobile version only allows for viewing the
photo gallery, while its desktop version allows users to also
upload photos and perform administrative functions. We
validated the need of these missing features through the
project’s support forum [3], where we found several user
complaints about not being able to upload photos, share
pictures, comment on gallery pictures, and change settings

through the mobile version of the site. Finally, for Twitter,
we confirmed four reported missing features related to view-
ing or editing details of the current user’s profile. We could
not check Twitter’s private support requests, which are not
accessible, but we found several user complaints about these
features on public forums. Interestingly, we later found that
Twitter’s developers implemented three out of these four fea-
tures in their latest mobile web application. We believe that
this provides further evidence of the usefulness of FMAP’s
ability to identify missing features.

FMAP also reported as missing a few features that were
actually present on both platforms. This was due to the fact
that the students who generated the traces did not exercise
these features on one of the platforms. After discussing this
issue with the students, we discovered that they were not
able to access such features due to the complex user inter-
face of the application on the platform in question. If con-
firmed by studies performed on a larger user population, we
speculate that this issue might represent useful feedback for
the developers about the usability of their user interface.

With the exception of Twitter, all other subjects have
low false negatives. Analyzing the traces for Twitter, we
found that the mobile and desktop versions were developed
independently (including the server-side functionality). This
is clearly not a good practice and deviates from the One Web
principle, upon which our technique is based. We believe
that the duplication of server-side functionality is unlikely
to occur in most cases, as a single code base favors code
re-use and eases maintenance. Moreover, in spite of this,
FMAP was able to match two features on each platform
with no false positives.

Overall, we think that the results are encouraging and
provide good evidence of the effectiveness of FMAP in both
matching features and finding missing features.

5.1 Limitations
Although our technique is a promising first solution to

the features mapping problem, it has certain limitations.
We discuss these in the following while noting that many of
these can be mitigated by further research in this area.

90

Trace collection: Since the traces used in our current
experiments were captured by student volunteers recruited
by us, a valid concern might be the dependence of our re-
sults on the choice of these traces. Specifically, there are
potentially issues of selecting similar use cases and traces
across the two platforms, while traces encountered in real-
world scenarios might be very different or consist of com-
plicated interleavings of features. To mitigate this issue, we
instructed the volunteers to generate traces independently
on the different platforms and chose different volunteers to
work on different platforms whenever possible. However, we
must perform further studies that involve more general trace
collection strategies and a broader user population to fully
address this concern. Ideally, we should use traces actually
collected in the field, rather than in the lab.

Omitted vs. missing features: It is difficult to au-
tomatically distinguish between erroneously missed features
and features that have been intentionally omitted by the
developers on certain platforms. Currently, FMAP reports
both of them as missing features. However, the technique
could be modified to accept a list of intentionally omitted
features and ignore discrepancies that involve such features.
For our subjects, we were indeed able to find instances where
ostensibly omitted features, reported by FMAP as missing
features, were not acceptable to some users of the applica-
tions. Nevertheless, understanding the distribution of erro-
neous versus intentionally omitted features in web applica-
tions, and modifying the technique to account for this dis-
tinction, is an important aspect that is worth investigating
in future work.

Generality of conclusions: The success of our tech-
nique is based on the inter-platform similarity of a web ap-
plication, and more specifically, on the fact that a web ap-
plication is developed according to the One Web principle.
Therefore, to avoid selection bias, we selected a diverse and
challenging set of subjects consisting of popular web appli-
cations with dynamic features and a clear difference in ap-
pearance across platforms. Also, the action clustering step
in Algorithm 1 relies on two thresholds, t1 and t2. We per-
formed a sensitivity study by independently varying each
threshold by ±0.1 and observed that it did not significantly
change the clustering result. However, as with all studies,
the generality of our conclusions will have to be further val-
idated by considering more subjects and performing further
experimentation.

6. RELATED WORK
To the best of our knowledge, this is the first paper that

addresses the problem of feature mapping among platform-
specific version of a web application. However, the problem
we address bears some similarity to problems in related do-
mains, which we discuss here.

Cross-browser testing: The objective of cross-browser
testing is to detect discrepancies between the renderings of
a given web application under different web browsers, typi-
cally on the same platform. Most prior work on this prob-
lem, including the authors’ recent work [25] is based on the
single platform assumption. In this setting, both presenta-
tion and function of the web application is expected to be
largely identical across different browsers. Any differences,
where present, are subtle, and typically confined to the lay-
out of individual web pages. By contrast, the desktop and
mobile versions of a web application can differ substantially

in their look, feel, and even workflow. Thus, the feature
mapping problem addressed in this work is about discover-
ing deep-seated, fundamental similarities in the functionality
of the two versions, in the face of largely dissimilar looking
presentation and behavior. In that sense, the problem of
feature mapping is somehow the opposite of what is solved
by cross-browser testing techniques.

Inferring API migration mappings: There is a body
of research (e.g., [10, 38, 24]) on inferring mappings between
two versions of an API or between two independent imple-
mentations of an API. This problem is related to the one we
address, but the way in which matching is performed and
the level at which it is performed are quite different. While
API mappings are between individual API functions, which
may be viewed as atomic actions, feature mapping maps use
cases or traces, which are sequences of actions. Further, API
mapping tools (e.g., Rosetta [10]) typically assume that they
are given a population of pairs of equivalent traces, one each
for the two API versions. Such a trace-level correspondence
is actually the output of our technique, which is based on the
assumption that the different versions of the web application
may have different client implementations but exhibit simi-
lar behavior at the client-server interface. No such interface
exists or can be exploited by API matching techniques.

Reverse engineering of web applications: These tech-
niques aim to reverse engineer a model of a web application
that can then be used as a basis for generating test cases for
the application (e.g., [20, 26, 5, 27]). Our work is orthogonal
to these techniques, as it starts with a set of traces of the web
application on each platform, independent of the source of
those traces. For instance, the traces could be derived from
the models constructed by such techniques, or derived from
manually or automatically generated test cases.

7. CONCLUSION
In this paper, we introduced and defined the problem

of missing features in web applications that are developed
in multiple platform-specific versions (e.g., desktop or mo-
bile). We proposed a novel technique to address this problem
and presented its implementation in a prototype tool called
FMAP. Our technique analyzes the client-server communi-
cation of different versions of a web application to match
features across platforms. Our preliminary evaluation of
FMAP, performed on nine real-world multi-platform web
applications, is promising. FMAP was able to correctly
identify 58 true missing features in the web applications con-
sidered. Moreover, 40 out of the issues identified were con-
firmed by real user reports or by examining software fixes
to the application. In future work, we will investigate ex-
tensions of our technique to migrate test suites across plat-
forms. We will also investigate the use of feature mapping
to uncover behavioral differences across different platform
front-ends, such as web and mobile (native) versions of an
application.

ACKNOWLEDGEMENTS
This was work supported in part by NSF awards CCF-
1161821, CNS-1117167, and CCF-0964647 to Georgia Tech,
and by a research contract with Fujitsu Labs of America.
Many thanks to the graduate students from Georgia Tech
who helped us with trace extraction.

91

8. REFERENCES
[1] G. Benson. Tandem repeats finder: a program to analyze

DNA sequences. Nucleic acids research, 27(2):573, 1999.

[2] T. Berners-Lee, L. Masinter, M. McCahill, et al. Uniform
Resource Locators (url). 1994.

[3] calleho. Theme: iMobile for iphone and ipad.
http://galleryproject.org/node/101768.

[4] J. Clause, W. Li, and A. Orso. Dytan: A Generic Dynamic
Taint Analysis Framework. In Proceedings of the
International Symposium on Software Testing and Analysis
(ISSTA 2007), pages 196–206, London, UK, July 2007.

[5] G. A. Di Lucca, A. R. Fasolino, and P. Tramontana.
Reverse engineering Web applications: the WARE
approach. Journal of Software Maintenance and Evolution,
16(1-2):71–101, Jan. 2004.

[6] A. Doronichev. YouTube Mobile gets a kick start.
http://youtube-global.blogspot.com/2010/07/youtube-
mobile-gets-kick-start.html, 2010.

[7] DudaMobile. Mobile Website Made Easy.
http://www.dudamobile.com/, September 2013.

[8] Fitbit. http://www.fitbit.com/.

[9] B. Fling. Mobile Design and Development: Practical
Concepts and Techniques for Creating Mobile Sites and
Web Apps, chapter 11. O’Reilly Media, 2009.

[10] A. Gokhale, V. Ganapathy, and Y. Padmanaban. Inferring
Likely Mappings between APIs. In Proceedings of the 2013
International Conference on Software Engineering, ICSE
’13, pages 82–91, Piscataway, NJ, USA, 2013. IEEE Press.

[11] Google Glass. http://www.google.com/glass/start/.
[12] V. Haldar, D. Chandra, and M. Franz. Dynamic Taint

Propagation for Java. In Computer Security Applications
Conference, 21st Annual, pages 9–pp. IEEE, 2005.

[13] P. Jaccard. Distribution de la flore alpine dans le Bassin
des Drouces et dans quelques regions voisines. In Bulletin
de la Société Vaudoise des Sciences Naturelles, volume 37,
pages 241–272. 1901.

[14] G. Jacobson and K.-P. Vo. Heaviest Increasing/Common
Subsequence Problems. In Combinatorial Pattern
Matching, volume 644 of Lecture Notes in Computer
Science, pages 52–66. Springer Berlin Heidelberg, 1992.

[15] jQuery Mobile. Touch-Optimized Web Framework for
Smartphones & Tablets. http://jquerymobile.com/,
September 2013.

[16] C. Knowledge. FILExt: The File Extension Source.
http://filext.com/.

[17] H. W. Kuhn. The Hungarian Method for the Assignment
Problem. Naval Research Logistics Quarterly, 2(1-2):83–97,
1955.

[18] C. D. Manning, P. Raghavan, and H. Schütze. Introduction
to Information Retrieval, volume 1. Cambridge University
Press Cambridge, 2008.

[19] A. M. Memon. An Event-flow Model of GUI-based
Applications for Testing: Research Articles. Softw. Test.
Verif. Reliab., 17(3):137–157, Sept. 2007.

[20] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling
Ajax-Based Web Applications through Dynamic Analysis of
User Interface State Changes. ACM Transactions on the
Web, 6(1):3:1–3:30, March 2012.

[21] G. A. Miller. WordNet: a Lexical Database for English.
Communications of the ACM, 38(11):39–41, 1995.

[22] Mobify. Adaptive Platform for Responsive Websites.
http://www.mobify.com/, September 2013.

[23] J. Munkres. Algorithms for the Assignment and
Transportation Problems. Journal of the Society for
Industrial and Applied Mathematics, 5(1):pp. 32–38, 1957.

[24] M. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and
T. Ratchford. Automated api property inference
techniques. Software Engineering, IEEE Transactions on,
39(5):613–637, 2013.

[25] S. Roy Choudhary, M. R. Prasad, and A. Orso. X-PERT:
Accurate Identification of Cross-Browser Issues in Web
Applications. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages
702–711, Piscataway, NJ, USA, 2013. IEEE Press.

[26] M. Schur, A. Roth, and A. Zeller. Mining Behavior Models
from Enterprise Web Applications. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 422–432, New York,
NY, USA, 2013. ACM.

[27] S. K. Sebatian Elbaum, Gregg Rothermal and M. Fisher II.
Leveraging User-Session Data to Support Web Application
Testing. IEEE Transactions on Software Engineering,
31(3):187–202, March 2005.

[28] Sencha Touch. Build Mobile Web Apps with HTML5.
http://www.sencha.com/products/touch, September 2013.

[29] Twitter. Overhauling mobile.twitter.com from the ground
up. https://blog.twitter.com/2012/overhauling-
mobiletwittercom-ground, 2012.

[30] Twitter Bootstrap. Sleek, intuitive, and powerful front-end
framework for faster and easier web development.
http://getbootstrap.com/, September 2013.

[31] The World Wide Web Consortium (W3C).
http://www.w3.org/, Jan 2013.

[32] K. Weide. Worldwide New Media Market Model 1H12
Highlights: Internet Becomes Ever More Mobile, Ever Less
PC Based. Technical Report 237459, International Data
Corporation, Oct 2012.

[33] L. Willamson. A mobile application development primer: A
guide for enterprise teams working on mobile application
projects. IBM Software: Thought Leadership White Paper,
2013.

[34] [Plugin: Wordpress mobile pack] allow author access to
mobile admin.
http://wordpress.org/support/topic/plugin-wordpress-
mobile-pack-allow-author-access-to-mobile-admin/,
2012.

[35] [Plugin: Wordpress mobile pack] adding media or tags.
http://wordpress.org/support/topic/plugin-wordpress-
mobile-pack-adding-media-or-tags/, 2010.

[36] Wordpress mobile pack.
http://wordpress.org/plugins/wordpress-mobile-pack/,
2012.

[37] World Wide Web Consortium. Mobile Web Best Practices
1.0.
http://www.w3.org/TR/2008/REC-mobile-bp-20080729/,
July 2008.

[38] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and
Q. Wang. Mining API Mapping for Language Migration. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, ICSE ’10, pages
195–204, New York, NY, USA, 2010. ACM.

92

