
CROSS-PLATFORM
FEATURE MATCHING

FOR WEB APPLICATIONS

Shauvik Roy Choudhary, Mukul Prasad, Alessandro Orso

Labs of America

Cross-Platform Feature Matching

for Web Applications

Shauvik Roy Choudhary*, Mukul R. Prasad†, Alessandro Orso*

*Georgia Institute of Technology †Fujitsu Laboratories of America
Atlanta, GA, USA Sunnyvale, CA, USA

{shauvik | orso}@cc.gatech.edu mukul@us.fujitsu.com

ABSTRACT
With the emergence of new computing platforms, software
written for traditional platforms is being re-targeted to reach
the users on these new platforms. In particular, due to
the proliferation of mobile computing devices, it is common
practice for companies to build mobile-specific versions of
their existing web applications to provide mobile users with
a better experience. Because the di↵erences between desk-
top and mobile versions of a web application are not only
cosmetic, but can also include substantial rewrites of key
components, it is not uncommon for these di↵erent versions
to provide di↵erent sets of features. Whereas some of these
di↵erences are intentional, such as the addition of location-
based features on mobile devices, others are not and can
negatively a↵ect the user experience, as confirmed by nu-
merous user reports and complaints. Unfortunately, check-
ing and maintaining the consistency of di↵erent versions of
an application by hand is not only time consuming, but also
error prone. To address this problem, and help developers
in this di�cult task, we propose an automated technique
for matching features across di↵erent versions of a multi-
platform web application. We implemented our technique
in a tool, called FMAP, and used it to perform a prelimi-
nary empirical evaluation on nine real-world multi-platform
web applications. The results of our evaluation are promis-
ing. FMAP was able to correctly identify missing features
between desktop and mobile versions of a set of web appli-
cations, as confirmed by our analysis of user reports and
software fixes for these applications.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement—
portability, reverse engineering

General Terms: Software Maintenance, Software Testing

Keywords: Cross-Platform, Mobile Web

1. INTRODUCTION
Today’s users run software on a variety of platforms, in-

cluding desktop computers, mobile devices such as smart-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA ’14, July 21-25, 2014, San Jose, CA, USA

Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

phones and tablets, and even wearable embedded comput-
ing devices [11, 8]. In fact, desktop computers are rapidly
being supplanted by mobile devices as the preferred means
of accessing Internet content. Case in point, the market re-
search firm IDC predicts that, by 2015, more users will be
accessing the Internet from mobile devices than from their
personal computers [32]. This move to mobile platforms has
been fueled, in part, by the increasing computing power of
modern mobile devices, coupled with their rich interactive
user interface, portability, and convenience.

Because of this increasing prevalence of mobile devices
and platforms, most companies whose business largely de-
pends on web presence, build versions of their existing web
applications customized for mobile devices, so as to provide
mobile users with a better experience. This customization
is necessary, despite the inherently multi-platform nature
of web applications, due to the unique features of mobile
devices, such as their form factor, user interface, and user-
interaction model [33]. Therefore, developers commonly re-
target their web applications, sometimes substantially, to
make them more suitable for mobile platforms [9].

In spite of the inherent di↵erences between desktop and
mobile platforms, and the resulting di↵erences between desk-
top and mobile versions of a web application, end users ex-
pect some level of consistency in the feature set o↵ered by
an application across all platforms. The World Wide Web
Consortium (W3C) standards committee, for instance, rec-
ommends the “One Web” principle for web browsing plat-
forms [37], which stipulates that web application users should
be provided with the same information and services irrespec-
tive of the device on which they are operating. Prominent
web service providers, such as Google [6] and Twitter [29],
follow this guideline. Figure 1 provides an illustrative exam-
ple involving the desktop and mobile versions of the popular
developer discussion forum stackoverflow.com. Although
there are substantial di↵erences in the look and feel of the
website in the two versions, both versions share the same
core functionality: clicking on a question shows detailed in-
formation for that particular question in both versions, both
versions allow the user to sort the questions according to
di↵erent criteria (using tabs in one case and the order by
drop-down menu in the other), and so on.

In this context, the challenge for web developers is to de-
velop di↵erent versions of their applications that are cus-
tomized to suit the specific characteristics of the di↵erent
platforms, yet provide a consistent set of features and ser-
vices across all versions. To do this, one common strategy
used by developers is to create separate front-end compo-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

ISSTA’14, July 21–25, 2014, San Jose, CA, USA

Copyright 2014 ACM 978-1-4503-2645-2/14/07...$15.00

http://dx.doi.org/10.1145/2610384.2610409

�
�
�
��
��

��
� �
��	
���� �

�
���

�
��
	
�����������

��

��
��
� �

���������

�
��
�
��
�
��

������ �

�
�
�

82

Thank you for your interest in my work.
This slide presents our work on web application feature matching across platforms.
This work was done at Georgia Tech in collaboration with Mukul Prasad from Fujitsu Labs and
my advisor, Alex Orso.

Web applications have become an integral part of our life and we use them for our day-to-day
personal and business activities on several different devices. But how do developers support
different devices?

MULTIPLE PLATFORMS

Desktop version Mobile version

Different User Interfaces for best user experience	

Different Features (often missed unintentionally)

Developers typically build different versions of the web app. For example, a desktop version
for large screen devices and mobile version for smaller screen devices.
- The UIs on different platforms are expected to be different and are tailored to offer the

best user experience on that platform
- These versions differ not only in the UI but in the features supported, where a feature is a

functionality offered by the web application.

MISSING FEATURES
Desktop Mobile

Here are the desktop and mobile versions of the Wordpress web application for blogging. As
shown,
desktop & mobile have significantly different UIs; and several features are missing on mobile.
Example, while creating a blogpost, you can’t add media or assign tags or categories to this
post.
These missing features adversely affect the user.

USER COMPLAINTS

When adding a post via mobile device 	

I don't seem to see an option for adding media or

even choosing categories or adding tags. 	

Is it just me or am I missing something? …

I'm using WordPress to run a class blog… 	

I'd like to let them edit from their mobile devices easily. 	

Is there a way …? … the whole point of having a
mobile theme was to make mobile access easier.

At this point I am sure that nobody 	

is supporting this plugin anymore. 	

I switched to WP-Touch several weeks ago

1) In fact this user complained about this same issue on the wordpress support forums.
2) The second user is a teacher and uses Wordpress to run her class blog. She is

complaining that without specific features available on mobile, the whole point of having
a mobile front-end is lost.

3) Finally, some people like this user, abandon the software and move on to other software.

PROBLEM	

Desktop version

Find Missing Features

Mobile version

Thus in this work, our goal is to find features present in one version of the web application but
missing from another platform's version of it.
To achieve this task, we first find the different features of the web application on both
platforms and..

PROBLEM	

Desktop version Mobile version

Missing Feature on Mobile

Find Missing Features

Missing Feature
on Desktop

.. establish a correspondence between matched features. Unmatched features are those,
which are missing from the other platform. !
This might seem easy at a high level; however there is a challenge while addressing this
problem.

CHALLENGE

Expected to look different

Web applications, like stackoverflow.com, shown here are expected to look different across
platforms.
Hence,
- UI comparison cannot be a basis for matching &
- any matching technique will need to work in spite of these expected differences and.

MOTIVATING EXAMPLE

Desktop Version

Mobile Version

Lets look at this fictitious website MakeMyPost.com, where the user can login and create a
post. Although both versions support the post creation use-case, their user interfaces are
significantly different. e.g., the red widgets are not present on mobile and different widgets
highlighted in green are used for the same action.
Thus, matching these features is very challenging given the different UIs. Now, lets look at
some observations that provide us a basis for performing the feature matching…

OPPORTUNITIES

Same server-side

REST

SOAP

XML-RPC

1) Web application versions need to offer similar features according to design guidelines
(i.e., the W3C OneWeb principle which advocates that developers should make
features available on each device albeit with different UIs.)

2) The next opportunity is the architectural similarity of web applications (i.e., both the
platforms typically connect to a common backend.)

The combination of these provide us a basis (i.e. the client-server interface) which we can
analyze and use to map the two versions.

NETWORK TRACES
1. REQUEST: GET /index.php	

2. RESPONSE: 200 OK, 'text/html'	

3. REQUEST: GET /style.css	

4. REPONSE: 200 OK, 'text/css'	

5. REQUEST: GET /logo.png	

6. REPONSE: 200 OK, 'image/png'	

7. REQUEST: GET /script.js	

8. REPONSE: 200 OK, 'text/javascript'	

9. REQUEST: POST /login.php
user=user1&pass=..&sid=w2s31	

10. RESPONSE: 200 OK, 'text/html'	

....	

11. REQUEST: POST /create_blog.php
title=..&content=..	

12. RESPONSE: 200 OK, 'text/html'

1. REQUEST: GET /index.php	

2. RESPONSE: 200 OK, 'text/html'	

3. REQUEST: GET /mobile_style.css	

4. REPONSE: 200 OK, 'text/css'	

5. REQUEST: GET /logo_small.png	

6. REPONSE: 200 OK, 'image/png'	

7. REQUEST: GET /mobile_script.js	

8. REPONSE: 200 OK, 'text/javascript'	

9. REQUEST: POST /login.php
user=myUser&pass=..&sid=d4sW2	

10. RESPONSE: 200 OK, 'text/html'	

....	

11. REQUEST: POST /create_blog.php
title=..&content=..	

12. RESPONSE: 200 OK, 'text/html'

Desktop Mobile

As shown here, the network level abstracts away most of the differences. In fact, our
technique operates at this level for performing the feature matching. !
But let me show you somethings that make our matching non-trivial.

NETWORK TRACES
1. REQUEST: GET /index.php	

2. RESPONSE: 200 OK, 'text/html'	

3. REQUEST: GET /style.css
4. REPONSE: 200 OK, 'text/css'	

5. REQUEST: GET /logo.png	

6. REPONSE: 200 OK, 'image/png'	

7. REQUEST: GET /script.js	

8. REPONSE: 200 OK, 'text/javascript'	

9. REQUEST: POST /login.php
user=user1&pass=..&sid=w2s31	

10. RESPONSE: 200 OK, 'text/html'	

....	

11. REQUEST: POST /create_blog.php
title=..&content=..	

12. RESPONSE: 200 OK, 'text/html'

1. REQUEST: GET /index.php	

2. RESPONSE: 200 OK, 'text/html'	

3. REQUEST: GET /mobile_style.css	

4. REPONSE: 200 OK, 'text/css'	

5. REQUEST: GET /logo_small.png	

6. REPONSE: 200 OK, 'image/png'	

7. REQUEST: GET /mobile_script.js	

8. REPONSE: 200 OK, 'text/javascript'	

9. REQUEST: POST /login.php
user=myUser&pass=..&sid=d4sW2	

10. RESPONSE: 200 OK, 'text/html'	

....	

11. REQUEST: POST /create_blog.php
title=..&content=..	

12. RESPONSE: 200 OK, 'text/html'

Desktop Mobile

Platform-specific resources

Requests can contain platform specific resources requested from each client.

NETWORK TRACES
1. REQUEST: GET /index.php	

2. RESPONSE: 200 OK, 'text/html'	

3. REQUEST: GET /style.css	

4. REPONSE: 200 OK, 'text/css'	

5. REQUEST: GET /logo.png	

6. REPONSE: 200 OK, 'image/png'	

7. REQUEST: GET /script.js	

8. REPONSE: 200 OK, 'text/javascript'	

9. REQUEST: POST /login.php
user=user1&pass=..&sid=w2s31	

10. RESPONSE: 200 OK, 'text/html'	

....	

11. REQUEST: POST /create_blog.php
title=..&content=..	

12. RESPONSE: 200 OK, 'text/html'

1. REQUEST: GET /index.php	

2. RESPONSE: 200 OK, 'text/html'	

3. REQUEST: GET /mobile_style.css	

4. REPONSE: 200 OK, 'text/css'	

5. REQUEST: GET /logo_small.png	

6. REPONSE: 200 OK, 'image/png'	

7. REQUEST: GET /mobile_script.js	

8. REPONSE: 200 OK, 'text/javascript'	

9. REQUEST: POST /login.php
user=myUser&pass=..&sid=d4sW2	

10. RESPONSE: 200 OK, 'text/html'	

....	

11. REQUEST: POST /create_blog.php
title=..&content=..	

12. RESPONSE: 200 OK, 'text/html'

Desktop Mobile

Generated or User Data

Requests can also contain system or user generated data such as IDs.

NETWORK TRACES
1. REQUEST: GET /index.php	

2. RESPONSE: 200 OK, 'text/html'	

3. REQUEST: GET /style.css	

4. REPONSE: 200 OK, 'text/css'	

5. REQUEST: GET /logo.png	

6. REPONSE: 200 OK, 'image/png'	

7. REQUEST: GET /script.js	

8. REPONSE: 200 OK, 'text/javascript'	

9. REQUEST: POST /login.php
user=user1&pass=..&sid=w2s31	

10. RESPONSE: 200 OK, 'text/html'	

....	

11. REQUEST: POST /create_blog.php
title=..&content=..	

12. RESPONSE: 200 OK, 'text/html'

1. REQUEST: GET /index.php	

2. RESPONSE: 200 OK, 'text/html'	

3. REQUEST: GET /mobile_style.css	

4. REPONSE: 200 OK, 'text/css'	

5. REQUEST: GET /logo_small.png	

6. REPONSE: 200 OK, 'image/png'	

7. REQUEST: GET /mobile_script.js	

8. REPONSE: 200 OK, 'text/javascript'	

9. REQUEST: POST /login.php
user=myUser&pass=..&sid=d4sW2	

10. RESPONSE: 200 OK, 'text/html'	

....	

11. REQUEST: POST /create_blog.php
title=..&content=..	

12. RESPONSE: 200 OK, 'text/html'

Desktop Mobile

Our technique is designed to ignore such differences and match features across the platforms
at the network level.
Before presenting our technique, let me walk you through some terminology used in our
approach.

TERMINOLOGY

Web browser Web server

Service

Request

Response

Request
Request

Action

Feature = Service1, Service2,… ServiceN

Trace = <req1,resp1>, <req2,resp2>,… <reqN,respN>

We will consider a typical client-server scenario as in web applications.
- A service is an atomic functionality offered by the web application. e.g., user login is an

example of a service
- A feature represents a set of services invoked in a certain sequence. e.g., user login

followed by deleting a post is a feature
- To access a service, the browser sends a request, which is served with a response.
- A network trace is a set of such request-response pairs in a particular order.
- Requests from different traces, devices and other contexts can access the same service. To

combine these traces, we introduce an action, which is an abstraction of requests where all
non-essential information is removed… and corresponds to a service being invoked.

FEATURE EQUIVALENCE

• Two features from different platforms are equivalent, if they
exercise the same set of services in the same sequence.

Feature = Service1, Service2,… ServiceN

Feature = Service1, Service2,… ServiceNDesktop

Mobile

Action1, Action2, … ActionN

Action1, Action2, … ActionN

The goal of the technique is to establish feature equivalence, where equivalent features
exercise the same set of services in the same sequence.
However, since we are operating on the network level and the server side is a black box, our
technique will use actions as a proxy for the services under consideration.
Now that I gave you the underlying formalism, let me walk you through our technique.

APPROACH OVERVIEW

Platforms

Trace
Extraction

Traces

1

Action
Recognition

A
X
B
Y
C
D

A
B
C
D

A
Q
R
S

A
Q
R
Q
R
S

M
N
O
P

U
V
W

Labeled Actions

A
B
C
D

A
Q
R
S

2

Features

Trace Set
Canonicalization

A
X
B
Y
C
D

A
B
C
D

A
Q
R
S

A
Q
R
Q
R
S

M
N
O
P

U
V
W

A
B
C
D

A
Q
R

S

3

Feature
Matching

A
X
B
Y
C
D

A

B

C
D

A
Q
R
S

A
Q
R
S

M
N
O
P

U
V
W

Matched
Features

Unmatched
Features

4

This is the high level overview of our technique, which will be explained in detail in upcoming
slides.
Given an application running on desktop and mobile, the technique extracts network traces
of the application.
Then, we process traces to recognize the different actions present in the traces
Then we combine similar traces into elemental traces — each of which correspond to a
feature
The final feature matching step gives the matched and unmatched features; the latter being
missing features on one of the platforms.

APPROACH OVERVIEW

Platforms

Trace
Extraction

Traces

1

Goal:
Collect network traces for

feature matching

Let’s look into detail by starting at trace extraction, where the goal is to collect network traces
that are used for feature matching.

1. TRACE EXTRACTION
Web browser Web server

User Interaction
Network Traces

<request, response> pairs

This step is mechanical, where as the user is accessing the web application, the network
communication emanating from the browser is captured as network traces.

APPROACH OVERVIEW

Platforms

Trace
Extraction

Traces

1

Action
Recognition

A
X
B
Y
C
D

A
B
C
D

A
Q
R
S

A
Q
R
Q
R
S

M
N
O
P

U
V
W

Labeled Actions

A
B
C
D

A
Q
R
S

2

Goal:
Recognize same
actions among

requests

In the next step, we process these traces to recognize similar actions among requests in
different traces

2. ACTION RECOGNITION
1. REQUEST: GET /index.php	

2. RESPONSE: 200 OK, 'text/html'	

3. REQUEST: GET /style.css	

4. REPONSE: 200 OK, 'text/css'	

5. REQUEST: GET /logo.png	

6. REPONSE: 200 OK, 'image/png'	

7. REQUEST: GET /script.js	

8. REPONSE: 200 OK, 'text/javascript'	

9. REQUEST: POST /login.php
user=user1&pass=..&sid=w2s31	

10. RESPONSE: 200 OK, 'text/html'	

....	

11. REQUEST: POST /create_blog.php
title=..&content=..	

12. RESPONSE: 200 OK, 'text/html'

Domain specific
vocabulary to identify
keywords in requests

Ignore requests 	

to stylistic resources

Specifically, given the traces, we first ignore stylistic resources such as images/stylesheets.
Then we use a domain specific vocabulary to extract keywords from the requests.

2. ACTION RECOGNITION
1. REQUEST: GET /index.php	

2. RESPONSE: 200 OK, 'text/html'	

3. REQUEST: GET /style.css	

4. REPONSE: 200 OK, 'text/css'	

5. REQUEST: GET /logo.png	

6. REPONSE: 200 OK, 'image/png'	

7. REQUEST: GET /script.js	

8. REPONSE: 200 OK, 'text/javascript'	

9. REQUEST: POST /login.php
user=user1&pass=..&sid=w2s31	

10. RESPONSE: 200 OK, 'text/html'	

....	

11. REQUEST: POST /create_blog.php
title=..&content=..	

12. RESPONSE: 200 OK, 'text/html'

(‘index’), 	

(‘script’), 	

(‘login’, ‘user’, ‘pass’, ‘sid’),	

(‘create’, ‘blog’, ‘title’, ‘content’)

Keywords

For our example, we get the following keyword sets.
These keywords gives us a basis to abstract requests across traces to identify same actions.

2. ACTION RECOGNITION

Traces

index
login, ..

create, ..
script

In particular, through the similarity of keywords, we identify requests potentially
corresponding to the same action, and group them into clusters. For instance, all the yellow
requests correspond to the index cluster.

2. ACTION RECOGNITION

index

login, ..

create, ..

script mobile_
script

index

login, ..

create, ..

Desktop Mobile

A A
B B

C C
D E

Then, we look at clusters across platforms and establish a correspondence by assigning each
matching clusters the same label across platforms.
For the clusters in our example, index is assigned the similar label A, and so is B & C.
D and E are platform specific actions and are not present on both sides. !
Now that we have same actions across different platforms, our next goal is to identify
features.

APPROACH OVERVIEW

Platforms

Trace
Extraction

Traces

1

Action
Recognition

A
X
B
Y
C
D

A
B
C
D

A
Q
R
S

A
Q
R
Q
R
S

M
N
O
P

U
V
W

Labeled Actions

A
B
C
D

A
Q
R
S

2

Features

Trace Set
Canonicalization

A
X
B
Y
C
D

A
B
C
D

A
Q
R
S

A
Q
R
Q
R
S

M
N
O
P

U
V
W

A
B
C
D

A
Q
R

S

3

Goal:
Group similar

traces as 	

features

For identifying features, we identify and merge slight variations of traces that represent the
same feature.

login
create
post

preview
post

publish
post

create
post

preview
post

3. TRACE SET
CANONICALIZATION

login
create
post

preview
post

publish
post

Tandem repeat: A set of two or more
contiguous repetitions of a sequence	

(used in the context of DNA sequences)

An example of this is is highlighted here. In the first trace, the user logs in, creates a post,
previews it and finally publishes the post. In the second trace, the user previews the post two
times by navigating back to the create post action. Both of these represent the same post
creation feature.
Thus, in this step, we canonicalize such traces into their most elemental form.
We use the concept of tandem repeat finder, which has been used heavily in the context of
DNA sequences. This allows us to combine these two traces into the same feature..

APPROACH OVERVIEW

Platforms

Trace
Extraction

Traces

1

Action
Recognition

A
X
B
Y
C
D

A
B
C
D

A
Q
R
S

A
Q
R
Q
R
S

M
N
O
P

U
V
W

Labeled Actions

A
B
C
D

A
Q
R
S

2

Features

Trace Set
Canonicalization

A
X
B
Y
C
D

A
B
C
D

A
Q
R
S

A
Q
R
Q
R
S

M
N
O
P

U
V
W

A
B
C
D

A
Q
R

S

3

Feature
Matching

A
X
B
Y
C
D

A

B

C
D

A
Q
R
S

A
Q
R
S

M
N
O
P

U
V
W

Matched
Features

Unmatched
Features

4

The final step in our approach matches features across the different platforms and reports
unmatched features as missing. Let me explain how we do this in more detail.

4. FEATURE MATCHING
Maximum Weighted Bipartite Matching (MWBM) problem  
Hungarian Algorithm [Kuhn 1955]

1

2

3

4

5

1

2

3

4

Fd Fm

0.9

0.2
0.8

0.3
0.7

0.2
0.3

0.7

1

2

3

4

5

1

2

3

4

Fd Fm

0.9

0.8

0.7

0.7

We formulate feature matching as a maximum weighted bipartite graph matching problem,
and leverage the Hungarian algorithm, which is an efficient and polynomial time algorithm.
The following is an example of our bipartite graph, where vertices are features on each
platform - desktop and mobile.. and edges are a possible similarity between these features,
with the edge weight as the similarity metric. We used the HCS as our similarity metric ..
details can be found in the paper. !
Now, the MWBM problem is to find a 1-1 bipartite matching such that the additive weight of
chosen edges is maximized. For this particular graph, we show the solution on the right side,
where 1-1, 2-2, 3-3, 5-4.. and 4 in the desktop. So, this how our algorithm works.

EMPIRICAL EVALUATION
• Tool: FMAP (Feature Matching Across Platforms)	

a. HTTP trace capture browser extension	

b. Feature matcher tool	

• Research Questions:
• RQ1: How effective is FMAP in recognizing web

application actions?	

• RQ2: How effective is FMAP in matching features between

the desktop and mobile versions of real web applications?

To evaluate our technique, we implemented it in a tool called FMAP, which stands for Feature
Matching across Platforms. Our tool consists of two components — 1) Browser extension for
the Chromium web browser to capture network traces 2) The feature matcher tool
implements the rest of the steps and provides a matching of features identified in the traces. !
We used our tool to answer the following research questions:
1) How effective is FMAP in the action recognition step..
2) What is FMAPs effective in the overall feature matching.
In the interest of time, I will explain RQ2. Details of RQ1 are available in the paper.

BASELINE
• Current practice: Developers manually keep track of

features across platforms	

• Baseline tool:

• Action recognition using unique URLs	

• Trace set canonicalization using exactly matching

sequence of actions	

• Feature matching using edit distance for MWBM

For our experiments, we wanted a baseline. However, current practice among developers is
to manually keep track of features across platforms. Thus, we implemented a baseline by
changing key steps of our technique with simpler ones. for example, in the trace set
canonicalizing step, we use exact action sequence matching and did not perform tandem
repeat elimination.

SUBJECT APPLICATIONS

Subject Type Mobile plug-in
wordpress Blogging wordpress mobile pack

drupal Content Management nokia mobile theme
phpbb Forum artodia mobile style

roundcube Email mobilecube theme
elgg Social Networking elgg mobile module

gallery Photo Management imobile theme
wikipedia.org Wiki -

stackoverflow.com Q&A -
twitter.com Social Networking -

6 open source and 3 public web applications 
Criteria: Popular applications with  

significant different across mobile & desktop

For our study, we chose 6 open source and 3 public web applications, as shown in this table.
We picked these from a list of top web applications, such that their user interface was
significantly different between the platforms.

PROTOCOL

1. Trace collection:  

2. Feature matching using tool and baseline	

3. Manually analyzed results to compute accuracy

F-score = 2× precision× recall
precision+ recall

× subjects× desktop |mobile()

- For conducting our experiments, we recruited 5 graduate students for trace collection
and gave them one or more subjects and asked them to study the user interface of the
web application, define as many use cases as they could and then exercise these use
cases on either the desktop or mobile version of the subject.

- Next, we performed feature matching using our tool and the baseline, and, manually
analyzed the results to compute accuracy. For computing accuracy, we calculated both
precision and recall, and used it to compute the F-score metric, which is reported in our
results.

RQ2: FEATURE MATCHING	

BASELINE

Features
Matched T Pos F Pos

F Neg T Neg
F-score

Subject D M D M D M

wordpress 29 8 8 3 5 2 1 21 1 48.0%
drupal 13 13 12 12 0 0 0 0 0 100.0%
phpbb 11 11 3 3 0 9 9 0 0 40.0%

roundcube 6 7 10 4 6 0 0 0 0 57.1%
elgg 9 7 9 2 7 4 0 0 0 30.8%

gallery 31 4 0 - - - - - - -
wikipedia.org 11 10 17 4 13 1 4 8 1 34.0%

stackoverflow.com 18 14 13 3 10 4 1 1 0 32.4%
twitter.com 16 11 0 - - - - - - -

Total 144 85 72 31 41 20 15 30 2 51.5%

This table shows the results of the Baseline tool in feature matching. The table shows for each
subject on desktop and mobile platforms, the reported feature matchings, true positives,
false positives, false negatives, true negatives and the overall F-score of the matching.
For instance, for PHPBB, out of 11 features, it could match 3 features, which were all true
positives but the rest 9 were false negatives, and the F-score was 40%
Note that for two subjects, gallery and twitter, it did not report any results.. and the overall F-
score of the baseline tool was 51.5%

RQ2: FEATURE MATCHING	

FMAP

Features
Matched T Pos F Pos

F Neg T Neg
F-score

Subject D M D M D M

wordpress 29 8 8 7 1 0 0 21 0 93.3%
drupal 13 13 12 12 0 0 0 0 0 100.0%
phpbb 11 11 10 10 0 1 1 0 0 95.2%

roundcube 6 7 4 4 0 2 3 0 0 76.2%
elgg 9 7 5 5 0 1 1 3 1 90.9%

gallery 31 4 3 2 1 1 1 26 0 66.7%
wikipedia.org 11 10 7 7 0 1 1 3 2 93.3%

stackoverflow.com 18 14 10 9 1 1 1 7 3 90.0%
twitter.com 16 11 2 2 0 8 8 6 1 33.3%

Total 144 85 61 58 3 15 16 66 7 86.3%

Now we see the results of the FMAP tool.
As shown, for the same subject PHPBB, FMAP could match 10 features instead of 3 and the
F-score was 95.2%.
Let me highlight the most challenging subject for FMAP — twitter. From the traces, we found
that the desktop and mobile versions were interacting with different servers, and on
contacting a twitter developer, we found that the mobile version was a legacy application.
We think that this is an exception, and that server-side is typically the same, because it favors
code re-use and eases maintenance.

RQ2: FEATURE MATCHING	

FMAP

Features
s

Reported T Pos F Pos F Neg T Neg
F-score

Subject D M D M D M D M D M D M

wordpress 29 8 8 8 7 7 1 1 0 0 21 0 93.3%
drupal 13 13 12 12 12 12 0 0 0 0 0 0 100.0%
phpbb 11 11 10 10 10 10 0 0 1 1 0 0 95.2%

roundcube 6 7 4 4 4 4 0 0 2 3 0 0 76.2%
elgg 9 7 5 5 5 5 0 0 1 1 3 1 90.9%

gallery 31 4 3 3 2 2 1 1 1 1 26 0 66.7%
wikipedia.org 11 10 7 7 7 7 0 0 1 1 3 2 93.3%

stackoverflow.com 18 14 10 10 9 9 1 1 1 1 7 3 90.0%
twitter.com 16 11 2 2 2 2 0 0 8 8 6 1 33.3%

Total 144 85 61 61 58 58 3 3 15 16 66 7 86.3%

RQ2: How effective is FMAP in matching
features between the desktop and
mobile versions of real web applications? 	

F-Score: 	
86.3% (FMAP)	

 	
 51.5% (Baseline)

In summary, the answer to RQ2 is YES, FMAP is effective in matching features, and thus
finding missing features. Its F-score is 86.3% as compared to the baseline’s 51.5%

40
56

Missing features reported by FMAP
confirmed from user reports & software fixes

Moreover, 40 out of 56 features reported missing by FMAP were confirmed from user reports
and fixes to the web application later by the developers themselves.
This increases our confidence in FMAP’s ability to find missing features.

LIMITATIONS AND 	

FUTURE WORK

• Trace Collection:
• General trace collection strategies	

• Broader user population	

• Intentionally omitted vs Missing features:
• Both currently reported as missing features	

• Study distribution & account for omitted features	

• White/Grey-box approach to identify features

While our approach is a good first attempt at this problem, it has certain limitations which
needs to be addressed by future work.
1) Our traces were collected by students. We could improve coverage of features in our

traces by collecting traces from a more realistic deployment and possibly from a broader
user population such as those obtained via crowd sourcing.

2) Secondly, features are sometimes omitted intentionally on certain platforms. Any
automated technique such as ours cannot distinguish between missing vs omitted
features. Future work should study the distribution of omitted vs missing features and
account for that in the technique.

3) Finally, our approach is black box in nature and the first attempt towards solving this

ARTIFACT

Open source tool release	

HTTP trace capture browser extension	

Feature matcher tool	

Experimental data — Collected student traces	

Documentation and Validation URLs

Cross-Platform Feature Matching

for Web Applications

Shauvik Roy Choudhary*, Mukul R. Prasad†, Alessandro Orso*

*Georgia Institute of Technology †Fujitsu Laboratories of America
Atlanta, GA, USA Sunnyvale, CA, USA

{shauvik | orso}@cc.gatech.edu mukul@us.fujitsu.com

ABSTRACT
With the emergence of new computing platforms, software
written for traditional platforms is being re-targeted to reach
the users on these new platforms. In particular, due to
the proliferation of mobile computing devices, it is common
practice for companies to build mobile-specific versions of
their existing web applications to provide mobile users with
a better experience. Because the di↵erences between desk-
top and mobile versions of a web application are not only
cosmetic, but can also include substantial rewrites of key
components, it is not uncommon for these di↵erent versions
to provide di↵erent sets of features. Whereas some of these
di↵erences are intentional, such as the addition of location-
based features on mobile devices, others are not and can
negatively a↵ect the user experience, as confirmed by nu-
merous user reports and complaints. Unfortunately, check-
ing and maintaining the consistency of di↵erent versions of
an application by hand is not only time consuming, but also
error prone. To address this problem, and help developers
in this di�cult task, we propose an automated technique
for matching features across di↵erent versions of a multi-
platform web application. We implemented our technique
in a tool, called FMAP, and used it to perform a prelimi-
nary empirical evaluation on nine real-world multi-platform
web applications. The results of our evaluation are promis-
ing. FMAP was able to correctly identify missing features
between desktop and mobile versions of a set of web appli-
cations, as confirmed by our analysis of user reports and
software fixes for these applications.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement—
portability, reverse engineering

General Terms: Software Maintenance, Software Testing

Keywords: Cross-Platform, Mobile Web

1. INTRODUCTION
Today’s users run software on a variety of platforms, in-

cluding desktop computers, mobile devices such as smart-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA ’14, July 21-25, 2014, San Jose, CA, USA

Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

phones and tablets, and even wearable embedded comput-
ing devices [11, 8]. In fact, desktop computers are rapidly
being supplanted by mobile devices as the preferred means
of accessing Internet content. Case in point, the market re-
search firm IDC predicts that, by 2015, more users will be
accessing the Internet from mobile devices than from their
personal computers [32]. This move to mobile platforms has
been fueled, in part, by the increasing computing power of
modern mobile devices, coupled with their rich interactive
user interface, portability, and convenience.
Because of this increasing prevalence of mobile devices

and platforms, most companies whose business largely de-
pends on web presence, build versions of their existing web
applications customized for mobile devices, so as to provide
mobile users with a better experience. This customization
is necessary, despite the inherently multi-platform nature
of web applications, due to the unique features of mobile
devices, such as their form factor, user interface, and user-
interaction model [33]. Therefore, developers commonly re-
target their web applications, sometimes substantially, to
make them more suitable for mobile platforms [9].
In spite of the inherent di↵erences between desktop and

mobile platforms, and the resulting di↵erences between desk-
top and mobile versions of a web application, end users ex-
pect some level of consistency in the feature set o↵ered by
an application across all platforms. The World Wide Web
Consortium (W3C) standards committee, for instance, rec-
ommends the “One Web” principle for web browsing plat-
forms [37], which stipulates that web application users should
be provided with the same information and services irrespec-
tive of the device on which they are operating. Prominent
web service providers, such as Google [6] and Twitter [29],
follow this guideline. Figure 1 provides an illustrative exam-
ple involving the desktop and mobile versions of the popular
developer discussion forum stackoverflow.com. Although
there are substantial di↵erences in the look and feel of the
website in the two versions, both versions share the same
core functionality: clicking on a question shows detailed in-
formation for that particular question in both versions, both
versions allow the user to sort the questions according to
di↵erent criteria (using tabs in one case and the order by
drop-down menu in the other), and so on.
In this context, the challenge for web developers is to de-

velop di↵erent versions of their applications that are cus-
tomized to suit the specific characteristics of the di↵erent
platforms, yet provide a consistent set of features and ser-
vices across all versions. To do this, one common strategy
used by developers is to create separate front-end compo-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

ISSTA’14, July 21–25, 2014, San Jose, CA, USA

Copyright 2014 ACM 978-1-4503-2645-2/14/07...$15.00

http://dx.doi.org/10.1145/2610384.2610409

�
�
�
��
��

��
� �
��	
���� �

�
���

�
��
	
�����������

��

��
��
� �

���������

�
��
�
��
�
��

������ �

�
�
�

82

http://gatech.github.io/fmap

Our artifact has been approved by the AEC committee and is available on github.
It includes, our tool, the experimental data of student traces, documentation and URLs used
to validate the missing features.

RELATED WORK
• Cross-Browser Testing  

[Roy Choudhary et. al., Mesbah et. al., Dallmeier et. al]	

➡ Both presentation & function expected to be identical
• Inferring API Migration Mappings  

[Gokhale et. al., Zhong et. al., Robillard et. al.]	

➡ Mapping atomic actions (functions) between API versions	

➡ Input: population of pairs of equivalent traces	

• Reverse Engineering of Web Applications  
[Mesbah et. al., Schur et. al., DiLucca et. al., Elbaum et. al.]	

➡ Generate model of web application

There are 3 sets of related work.
1) There is work on Cross-browser testing, where both presentation & function are expected

to be identical and any differences are reported as issues. However, in our case these are
expected to be different.

2) There is also a line of work is to infer API migration mappings, which maps atomic actions
(i.e., functions) between different API versions. These techniques take as an input a
population of pairs of equivalent traces. However, our technique needs to find this
equivalence.

3) The final set of related work is to reverse engineer web applications to generate a model
of a web application. This is an orthogonal problem and we believe that feature matching

SUMMARY

MISSING FEATURES
Desktop Mobile

!5

APPROACH OVERVIEW

Platforms

Trace
Extraction

Traces

Action
Recognition

A
X
B
Y
C
D

A
B
C
D

A
Q
R
S

A
Q
R
Q
R
S

M
N
O
P

U
V
W

Labeled Actions

A
B
C
D

A
Q
R
S

Features

Trace Set
Canonicalization

A
X
B
Y
C
D

A
B
C
D

A
Q
R
S

A
Q
R
Q
R
S

M
N
O
P

U
V
W

A
B
C
D

A
Q
R

S

Feature
Matching

A
X
B
Y
C
D

A

B

C
D

A
Q
R
S

A
Q
R
S

M
N
O
P

U
V
W

Matched
Features

Unmatched
Features

ARTIFACT

http://gatech.github.io/fmap

Open source tool release!
HTTP trace capture browser extension!
Feature matcher tool!

Experimental data — Collected student traces!

Documentation and Validation URLs

Cross-Platform Feature Matching

for Web Applications

Shauvik Roy Choudhary*, Mukul R. Prasad†, Alessandro Orso*

*Georgia Institute of Technology †Fujitsu Laboratories of America
Atlanta, GA, USA Sunnyvale, CA, USA

{shauvik | orso}@cc.gatech.edu mukul@us.fujitsu.com

ABSTRACT
With the emergence of new computing platforms, software
written for traditional platforms is being re-targeted to reach
the users on these new platforms. In particular, due to
the proliferation of mobile computing devices, it is common
practice for companies to build mobile-specific versions of
their existing web applications to provide mobile users with
a better experience. Because the di↵erences between desk-
top and mobile versions of a web application are not only
cosmetic, but can also include substantial rewrites of key
components, it is not uncommon for these di↵erent versions
to provide di↵erent sets of features. Whereas some of these
di↵erences are intentional, such as the addition of location-
based features on mobile devices, others are not and can
negatively a↵ect the user experience, as confirmed by nu-
merous user reports and complaints. Unfortunately, check-
ing and maintaining the consistency of di↵erent versions of
an application by hand is not only time consuming, but also
error prone. To address this problem, and help developers
in this di�cult task, we propose an automated technique
for matching features across di↵erent versions of a multi-
platform web application. We implemented our technique
in a tool, called FMAP, and used it to perform a prelimi-
nary empirical evaluation on nine real-world multi-platform
web applications. The results of our evaluation are promis-
ing. FMAP was able to correctly identify missing features
between desktop and mobile versions of a set of web appli-
cations, as confirmed by our analysis of user reports and
software fixes for these applications.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement—
portability, reverse engineering

General Terms: Software Maintenance, Software Testing

Keywords: Cross-Platform, Mobile Web

1. INTRODUCTION
Today’s users run software on a variety of platforms, in-

cluding desktop computers, mobile devices such as smart-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA ’14, July 21-25, 2014, San Jose, CA, USA

Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

phones and tablets, and even wearable embedded comput-
ing devices [11, 8]. In fact, desktop computers are rapidly
being supplanted by mobile devices as the preferred means
of accessing Internet content. Case in point, the market re-
search firm IDC predicts that, by 2015, more users will be
accessing the Internet from mobile devices than from their
personal computers [32]. This move to mobile platforms has
been fueled, in part, by the increasing computing power of
modern mobile devices, coupled with their rich interactive
user interface, portability, and convenience.

Because of this increasing prevalence of mobile devices
and platforms, most companies whose business largely de-
pends on web presence, build versions of their existing web
applications customized for mobile devices, so as to provide
mobile users with a better experience. This customization
is necessary, despite the inherently multi-platform nature
of web applications, due to the unique features of mobile
devices, such as their form factor, user interface, and user-
interaction model [33]. Therefore, developers commonly re-
target their web applications, sometimes substantially, to
make them more suitable for mobile platforms [9].

In spite of the inherent di↵erences between desktop and
mobile platforms, and the resulting di↵erences between desk-
top and mobile versions of a web application, end users ex-
pect some level of consistency in the feature set o↵ered by
an application across all platforms. The World Wide Web
Consortium (W3C) standards committee, for instance, rec-
ommends the “One Web” principle for web browsing plat-
forms [37], which stipulates that web application users should
be provided with the same information and services irrespec-
tive of the device on which they are operating. Prominent
web service providers, such as Google [6] and Twitter [29],
follow this guideline. Figure 1 provides an illustrative exam-
ple involving the desktop and mobile versions of the popular
developer discussion forum stackoverflow.com. Although
there are substantial di↵erences in the look and feel of the
website in the two versions, both versions share the same
core functionality: clicking on a question shows detailed in-
formation for that particular question in both versions, both
versions allow the user to sort the questions according to
di↵erent criteria (using tabs in one case and the order by
drop-down menu in the other), and so on.

In this context, the challenge for web developers is to de-
velop di↵erent versions of their applications that are cus-
tomized to suit the specific characteristics of the di↵erent
platforms, yet provide a consistent set of features and ser-
vices across all versions. To do this, one common strategy
used by developers is to create separate front-end compo-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

ISSTA’14, July 21–25, 2014, San Jose, CA, USA

Copyright 2014 ACM 978-1-4503-2645-2/14/07...$15.00

http://dx.doi.org/10.1145/2610384.2610409

�
�
�
��
��

��
� �
��	
���� �

�
���

�
��
	
�����������

��

��
��
� �

���������

�
��
�
��
�
��

������ �

�
�
�

82

"34

RQ2: FEATURE MATCHING!
FMAP

"34

Features
s

Reported T Pos F Pos F Neg T Neg
F-score

Subject D M D M D M D M D M D M

wordpress 29 8 8 8 7 7 1 1 0 0 21 0 93.3%
drupal 13 13 12 12 12 12 0 0 0 0 0 0 100.0%
phpbb 11 11 10 10 10 10 0 0 1 1 0 0 95.2%

roundcube 6 7 4 4 4 4 0 0 2 3 0 0 76.2%
elgg 9 7 5 5 5 5 0 0 1 1 3 1 90.9%

gallery 31 4 3 3 2 2 1 1 1 1 26 0 66.7%
wikipedia.org 11 10 7 7 7 7 0 0 1 1 3 2 93.3%

stackoverflow.com 18 14 10 10 9 9 1 1 1 1 7 3 90.0%
twitter.com 16 11 2 2 2 2 0 0 8 8 6 1 33.3%

Total 144 85 61 61 58 58 3 3 15 16 66 7 86.3%

RQ2: How effective is FMAP in matching
features between the desktop and
mobile versions of real web applications? !

F-Score: !86.3% (FMAP)!

 ! 51.5% (Baseline)

In summary, I motivated the problem of finding missing features. I presented our technique
for matching features with its evaluation and open source release of our artifact. !
Thank you for your time! If you have any questions or comments please reach out to me at
shauvik [at] gmail.com

