CROSS-PLATFORM
FEATURE MATCHING
FOR WEB APPLICATIONS

Shauvik Roy Choudhary, Mukul Prasad, Alessandro Orso

Thank you for your interest in my work.
This slide presents our work on web application feature matching across platforms.
This work was done at Georgia Tech in collaboration with Mukul Prasad from Fujitsu Labs and

my advisor, Alex Orso.

cegn) By egen)
Linked [T} Web applications have become an integral part of our life and we use them for our day-to-day
tumblr personal and business activities on several different devices. But how do developers support
ebay Btz different devices?
amazon :
Gmail
4 Hotmail
Google
Bait¥=m flickr
You{TD)
)
. ¢ MSbank
ngbﬁrce Live e

B DIGITAL .
ACM&LIBRAR‘(IEEE Xplore:

MIUITIPLE PLATFORIMEE

Desktop version Mobile version

Different User Interfaces for best user experience
Different Features (often missed unintentionally)

Developers typically build different versions of the web app. For example, a desktop version
for large screen devices and mobile version for smaller screen devices.
The Uls on different platforms are expected to be different and are tailored to offer the
best user experience on that platform
These versions differ not only in the Ul but in the features supported, where a feature is a

functionality offered by the web application.

MISSING FEATERES

53 Desktop I Mobile

Edit Post acsen

Hello world!

Here are the desktop and mobile versions of the Wordpress web application for blogging. As
shown,

desktop & mobile have significantly different Uls; and several features are missing on mobile.
Example, while creating a blogpost, you can’t add media or assign tags or categories to this
post.

These missing features adversely affect the user.

SEER COMPLATINGEE

% When adding a post via mobile device
| don't seem to see an option for adding media or

jhannigan
Me .
R/

'g At this point | am sure that nobody
.2 is supporting this plugin anymore.
angeloca .
‘: vemer | sWitched to WP-Touch several weeks ago
libbyh

Member Is there a way ...7 ... the whole point of having a
mobile theme was to make mobile access easier.

-

1) In fact this user complained about this same issue on the wordpress support forums.

2) The second user is a teacher and uses Wordpress to run her class blog. She is
complaining that without specific features available on mobile, the whole point of having
a mobile front-end is lost.

3) Finally, some people like this user, abandon the software and move on to other software.

PROBLEM

Find Missing Features

Desktop version Mobile version

Thus in this work, our goal is to find features present in one version of the web application but
missing from another platform's version of it.
To achieve this task, we first find the different features of the web application on both

platforms and..

PROBLEM

Find Missing Features

Desktop version

®e
r®
é Missing Featureiﬂlobilel

Mobile version

.. establish a correspondence between matched features. Unmatched features are those,

which are missing from the other platform.

This might seem easy at a high level; however there is a challenge while addressing this

problem.

.l Stack Overflow
»

Stack Overflow v

Questions Tags Users Badges Unanswered Ask

All Questions order by (interesing [§@)

mapping json returned from controller
to strongly typed view

user20358

I CAREERS 2.0 Is there a way to find out more detail
about my database connection issue?

il CAREERS 2.0 lebugging | er =

"""""""" Using Source Code Control in Ogflile
SQL Developer

Expected to look different

Web applications, like stackoverflow.com, shown here are expected to look different across
platforms.

Hence,
- Ul comparison cannot be a basis for matching &

- any matching technique will need to work in spite of these expected differences and.

ROTIVATING EXANMEES

£ MakeMyPost.com | £ MakeMyPost.com |
Home Blog Pages
Username | myUser CREATE POST
= Desktop Version | " _—
= !,/ Remember m»} I ®) Blog ® Pages]
o ¥ §My Post Content
(Submit Post)

Z lyPost.com | | £ lyPost. F4 lyPost.com

Usemame [Crame -]}
I Mobile Version myUser CREATE POST CREATE POST

Password Wy Post e P

Wy Post Content

Login Hoime

Submit Blog

Lets look at this fictitious website MakeMyPost.com, where the user can login and create a

post. Although both versions support the post creation use-case, their user interfaces are
significantly different. e.g., the red widgets are not present on mobile and different widgets
highlighted in green are used for the same action.

Thus, matching these features is very challenging given the different Uls. Now, lets look at

some observations that provide us a basis for performing the feature matching...

SPPORTUNITHES

WaCTzise

REST

Same server-side

1) Web application versions need to offer similar features according to design guidelines
(i.e., the W3C OneWeb principle which advocates that developers should make
features available on each device albeit with different Uls.)

2) The next opportunity is the architectural similarity of web applications (i.e., both the

platforms typically connect to a common backend.)

The combination of these provide us a basis (i.e. the client-server interface) which we can

analyze and use to map the two versions.

NERYORKTRAGES

Desktop
|.REQUEST: GET /index.php
2. RESPONSE: 200 OK, 'text/html'
3. REQUEST: GET /style.css
4. REPONSE: 200 OK, 'text/css'
5. REQUEST: GET /logo.png
6. REPONSE: 200 OK, 'image/png'
7.REQUEST: GET /script.js
8. REPONSE: 200 OK, 'text/javascript'
9. REQUEST: POST /login.php
user=user | &pass=..&sid=w2s3 |
10. RESPONSE: 200 OK, 'text/html’

1. REQUEST: POST /create_blog.php
title=..&content=..
12. RESPONSE: 200 OK, 'text/html'

Mobile
|. REQUEST: GET /index.php
2. RESPONSE: 200 OK, 'text/html'
3. REQUEST: GET /mobile_style.css
4. REPONSE: 200 OK, 'text/css'
5.REQUEST: GET /logo_small.png
6. REPONSE: 200 OK, 'image/png'
7.REQUEST: GET /mobile_script.js
8. REPONSE: 200 OK, 'text/javascript’
9. REQUEST: POST /login.php
user=myUser&pass=..&sid=d4sW2
10. RESPONSE: 200 OK, 'text/html'

I'1.REQUEST: POST /create_blog.php
title=..&content=..
12. RESPONSE: 200 OK, 'text/html'

As shown here, the network level abstracts away most of the differences. In fact, our

technique operates at this level for performing the feature matching.

But let me show you somethings that make our matching non-trivial.

NERVYORKTRAEE

Desktop
|.REQUEST: GET /index.php
2. RESPONSE: 200 OK, 'text/html'
3. REQUEST: GET /style.css
4. REPONSE: 200 OK, 'text/css'
5.REQUEST: GET /logo.png
6. REPONSE: 200 OK, 'image/png'
7.REQUEST: GET /script.js
8. REPONSE: 200 OK, 'text/javascript'
%

R
=« Platform-specific resources "2

Mobile

|.REQUEST: GET /index.php

2. RESPONSE: 200 OK, 'text/html'

3. REQUEST: GET /mobile_style.css

4. REPONSE: 200 OK, 'text/css'

5.REQUEST: GET /logo_small.png

6. REPONSE: 200 OK, 'image/png'

7.REQUEST: GET /mobile_script.js

8. REPONSE: 200 OK, 'text/javascript’
P

«t/html'

I'1. REQUEST: POST /create_blog.php
title=..&content=..
12. RESPONSE: 200 OK, 'text/html'

11. REQUEST: POST /create_blog.php
title=..&content=..
12. RESPONSE: 200 OK, 'text/html"

Requests can contain platform specific resources requested from each client.

NEFVYORKTRAGES

Desktop Mobile
I. REQUEST: GET /index.php |. REQUEST: GET /index.php
2. RESPONSE: 200 OK, 'text/html' 2. RESPONSE: 200 OK, 'text/html'
3. REQUEST: GET /style.css 3. REQUEST: GET /mobile_style.css

4. REPONSE: 200 OK, 'text/css' 4. REPONSE: 200 OK, 'text/css'

Generated or User Data

- .

9. REQUEST: POST /login.php 9. REQUEST: POST /login.php
user=user | &pass=..&sid=w2s3 | user=myUser&pass=..&sid=d4sW2
10. RESPONSE: 200 OK, 'text/html' 10. RESPONSE: 200 OK, 'text/html'
I'1.REQUEST: POST /create_blog.php 11.REQUEST: POST /create_blog.php
title=..&content=.. title=..&content=..

12. RESPONSE: 200 OK, 'text/html' 12. RESPONSE: 200 OK, 'text/html’

Requests can also contain system or user generated data such as IDs.

NERYORKTRAGES

Desktop Mobile
|.REQUEST: GET /index.php |.REQUEST: GET /index.php
2. RESPONSE: 200 OK, 'text/html' 2. RESPONSE: 200 OK, 'text/html'
3. REQUEST: GET /style.css 3. REQUEST: GET /mobile_style.css
4. REPONSE: 200 OK, 'text/css' 4. REPONSE: 200 OK, 'text/css'
5. REQUEST: GET /logo.png 5.REQUEST: GET /logo_small.png
6. REPONSE: 200 OK, 'image/png' 6. REPONSE: 200 OK, 'image/png'
7.REQUEST: GET /script.js 7.REQUEST: GET /mobile_script.js
8. REPONSE: 200 OK, 'text/javascript' 8. REPONSE: 200 OK, 'text/javascript’
9. REQUEST: POST /login.php 9. REQUEST: POST /login.php
user=user | &pass=..&sid=w2s3 | user=myUser&pass=..&sid=d4sW2
10. RESPONSE: 200 OK, 'text/html’ 10. RESPONSE: 200 OK, 'text/html'
1. REQUEST: POST /create_blog.php I'1.REQUEST: POST /create_blog.php
title=..&content=.. title=..&content=..
12. RESPONSE: 200 OK, 'text/html' 12. RESPONSE: 200 OK, 'text/html'

Our technique is designed to ignore such differences and match features across the platforms

at the network level.

Before presenting our technique, let me walk you through some terminology used in our

approach.

FERMINOLOEH

Web browser Web server

XX]

o

e)
ool Request
1

{ N

Res Action
. f=m
‘ Trace = <reqlresp|>, <req2resp2>,... <reqNrespN> ‘

‘ Feature = Servicel, Service2,... ServiceN ‘

R

We will consider a typical client-server scenario as in web applications.

A service is an atomic functionality offered by the web application. e.g., user login is an
example of a service

A feature represents a set of services invoked in a certain sequence. e.g., user login
followed by deleting a post is a feature

To access a service, the browser sends a request, which is served with a response.

A network trace is a set of such request-response pairs in a particular order.

Requests from different traces, devices and other contexts can access the same service. To
combine these traces, we introduce an action, which is an abstraction of requests where all

non-essential information is removed... and corresponds to a service being invoked.

= TURE EQUIVALENSS

+ Two features from different platforms are equivalent, if they
exercise the same set of services in the same sequence.

Actionl, Action2, ... ActionN

&2 Desktop Feature = SereeksSerioestmmSewm W
Actionl, Action2, ... ActionN

Mobile Feature = & ; i MW

The goal of the technique is to establish feature equivalence, where equivalent features
exercise the same set of services in the same sequence.

However, since we are operating on the network level and the server side is a black box, our
technique will use actions as a proxy for the services under consideration.

Now that | gave you the underlying formalism, let me walk you through our technique.

e IFPROACH OVERVIES
o @ ®

Trace Action Trace Set
Extraction Recognition Canonicalization @
u

; 33 I’J‘I Feature
http://www... Matching
> 553 = V57
¢ [
——— D |SS &
v

AA[A U ﬁ PEW
o> => > |eela v ",
CCIR W Matched Unmatched

bDjs Features Features
Platforms Traces Labeled Actions Features

DOo<wx>
CET-ET-33
PET-3
wozz

Do<wx>
oo @ »
PETES
ET-33
oz=

s<c

oo [

cowx»
cow»

This is the high level overview of our technique, which will be explained in detail in upcoming
slides.

Given an application running on desktop and mobile, the technique extracts network traces
of the application.

Then, we process traces to recognize the different actions present in the traces

Then we combine similar traces into elemental traces — each of which correspond to a
feature

The final feature matching step gives the matched and unmatched features; the latter being

missing features on one of the platforms.

EFPROACH OVERVIER
O,

Trace
Extraction

.

Collect network traces for
% feature matching

Platforms Traces

Let's look into detail by starting at trace extraction, where the goal is to collect network traces

that are used for feature matching.

[FIRACE EXTRACTHEN

Web browser Web server

T

Network Traces
<request, response> pairs

User Interaction

This step is mechanical, where as the user is accessing the web application, the network

communication emanating from the browser is captured as network traces.

e IFPROACH OVERVIES
o @

Trace Action
Extraction Recognition

i - |-

Goal:
Recognize same

DOo<wx>
CET-ET-33
PET-3
wozz

actions among

AAA U requests
= S FHE
DD
Platforms Traces Labeled Actions

oo [

In the next step, we process these traces to recognize similar actions among requests in

different traces

g C TION RECOGNITHGIN

|. REQUEST: GET /index.php

2. RESPONSE: 200 OK, 'text/html'

4. REPONSE: 200 OK, 'text/css' Ignore requests
b REQUHESHEEFH to stylistic resources

(bl
6. REPONSE: 200 OK, 'image/png'

7.REQUEST: GET /script.js
8. REPONSE: 200 OK, 'text/javascript'

9. REQUEST: POST /login.php
user=user | &pass=..&sid=w2s3 | Domain speciﬂc

10. RESPONSE: 200 OK, 'text/html vocabu\ary to |dent|fy
1. REQUEST: POST /create_blog.php keywords in requests

title=..&content=..
12. RESPONSE: 200 OK, 'text/html'

Specifically, given the traces, we first ignore stylistic resources such as images/stylesheets.

Then we use a domain specific vocabulary to extract keywords from the requests.

g CTION RECOGNITHGIN

index

(‘index’),
(‘script’),
Seipy (‘login’, ‘user’, ‘pass’, ‘sid’),
login

) (‘create’, ‘blog’, ‘title’, ‘content’)
user pass sid

Keywords
create blog
title content

For our example, we get the following keyword sets.

These keywords gives us a basis to abstract requests across traces to identify same actions.

= CTION RECOGNIFHEIN

index .

=

Traces

In particular, through the similarity of keywords, we identify requests potentially

corresponding to the same action, and group them into clusters. For instance, all the yellow

requests correspond to the index cluster.

g C TION RECOGNITHGIN

E

E Desktop E I Mobile

Then, we look at clusters across platforms and establish a correspondence by assigning each
matching clusters the same label across platforms.
For the clusters in our example, index is assigned the similar label A, and so is B & C.

D and E are platform specific actions and are not present on both sides.

Now that we have same actions across different platforms, our next goal is to identify
features.

APPROACH OVERVIEW
O o ®

Trace Action Trace Set

Extraction Recognition Canonicalization
AAAM A[AAlM
http://www... X aan x [aa| N .
¢>§%§ SR A Goal:
R Q .
= = 5 s Sy Group similar
—= I traces as
AAA U 1A 0 features
S ES S] ;
DDS pD|s
Platforms Traces Labeled Actions Features

For identifying features, we identify and merge slight variations of traces that represent the

same feature.

ERFRACE =
CANONICALIZATION

create preview publish

login
post post post
. create preview publish
login
post post post

Tandem repeat: A set of two or more
contiguous repetitions of a sequence

(used in the context of DNA sequences)

An example of this is is highlighted here. In the first trace, the user logs in, creates a post,
previews it and finally publishes the post. In the second trace, the user previews the post two
times by navigating back to the create post action. Both of these represent the same post
creation feature.

Thus, in this step, we canonicalize such traces into their most elemental form.

We use the concept of tandem repeat finder, which has been used heavily in the context of

DNA sequences. This allows us to combine these two traces into the same feature..

EFPROACH OVERVIER
(L ey ®

Trace Action Trace Set
Extraction R iti icalizati

)
<l <[] < [FR)7

Platforms Traces Labeled Actions Features

O,

" Feature
g Matching
P

CDO<®wx>

PET-ET-33
PET-ES
wozz | O

A
X
= |y
c
D

u
v
P W

Do<mx>
oo @ >
PETES
ET-33
oz=

ono> [

cow>»
cow>
s<c

—
Matched Unmatched
Features Features

The final step in our approach matches features across the different platforms and reports

unmatched features as missing. Let me explain how we do this in more detail.

p | EATURE MATCIEIINGE

Maximum Weighted Bipartite Matching (MWBM) problem
Hungarian Algorithm [Kuhn [955]

We formulate feature matching as a maximum weighted bipartite graph matching problem,
and leverage the Hungarian algorithm, which is an efficient and polynomial time algorithm.
The following is an example of our bipartite graph, where vertices are features on each
platform - desktop and mobile.. and edges are a possible similarity between these features,
with the edge weight as the similarity metric. We used the HCS as our similarity metric ..

details can be found in the paper.

Now, the MWBM problem is to find a 1-1 bipartite matching such that the additive weight of
chosen edges is maximized. For this particular graph, we show the solution on the right side,

where 1-1, 2-2, 3-3, 5-4.. and 4 in the desktop. So, this how our algorithm works.

EMRIRICAL EVALUATNGIN

* Tool: FMAP (Feature Matching Across Platforms)
a. HTTP trace capture browser extension

b. Feature matcher tool

* Research Questions:

* RQI: How effective is FMAP in recognizing web
application actions?

* RQ2: How effective is FMAP in matching features between
the desktop and mobile versions of real web applications?

To evaluate our technique, we implemented it in a tool called FMAP, which stands for Feature
Matching across Platforms. Our tool consists of two components — 1) Browser extension for
the Chromium web browser to capture network traces 2) The feature matcher tool

implements the rest of the steps and provides a matching of features identified in the traces.

We used our tool to answer the following research questions:
1) How effective is FMAP in the action recognition step..
2) What is FMAPs effective in the overall feature matching.

In the interest of time, | will explain RQ2. Details of RQ1 are available in the paper.

BASELINE

* Current practice: Developers manually keep track of
features across platforms
+ Baseline tool:

+ Action recognition using unique URLs

+ Trace set canonicdlization using exactly matching

sequence of actions

* Feature matching using edit distance for MWBM

For our experiments, we wanted a baseline. However, current practice among developers is
to manually keep track of features across platforms. Thus, we implemented a baseline by
changing key steps of our technique with simpler ones. for example, in the trace set
canonicalizing step, we use exact action sequence matching and did not perform tandem

repeat elimination.

EEBIECT APPLICATIORNE

6 open source and 3 public web applications
Criteria: Popular applications with
significant different across mobile & desktop

Subject Type Mobile plug-in
wordpress Blogging wordpress mobile pack
drupal Content Management| nokia mobile theme
phpbb Forum artodia mobile style
roundcube Email mobilecube theme
elgg Social Networking elgg mobile module
galler Photo Management imobile theme
wikipedia.org Wiki
stackoverflow.com Q&A
twittercom Social Networking

For our study, we chose 6 open source and 3 public web applications, as shown in this table.
We picked these from a list of top web applications, such that their user interface was

significantly different between the platforms.

RROTOCEES

|. Trace collection:

‘@'i HI U @ @ x subjects x (desktop | mobile)

2. Feature matching using tool and baseline

3. Manually analyzed results to compute accuracy

recision x recall
F-score=2x p—
precision+recall

- For conducting our experiments, we recruited 5 graduate students for trace collection
and gave them one or more subjects and asked them to study the user interface of the
web application, define as many use cases as they could and then exercise these use
cases on either the desktop or mobile version of the subject.

- Next, we performed feature matching using our tool and the baseline, and, manually

analyzed the results to compute accuracy. For computing accuracy, we calculated both
precision and recall, and used it to compute the F-score metric, which is reported in our

results.

RO FEATURE MATCHINGES

BASELINE
Features F Neg| T Neg
Matched | T Pos|F Pos F-score
Subject D M D M(D M
wordpress 29 8 8 3 5 2 (1211 | 48.0%
drupal 13 | 13 122 12 0 [0|0fO0|O0]1000%
phpbb 1l B 3 0 [9/9]0 /0] 400%
roundcube 6 7 10 4 6 (O BOR B8 (0) || 57/ 1155
elgg 9 (7 o) 7 7 |4 | 0]|fos[ReA|E8eEe
gallery 31 4 0
wikipedia.org I 10 17 4 I35] 4 | S 8= S I SS O
stackoverflow.com| 18 14 13 8 10 |41 1 |0] 324%
twitter.com 16 11 0
Total 144 85 72 31 41 |2015/30 2| 51.5%

This table shows the results of the Baseline tool in feature matching. The table shows for each
subject on desktop and mobile platforms, the reported feature matchings, true positives,
false positives, false negatives, true negatives and the overall F-score of the matching.

For instance, for PHPBB, out of 11 features, it could match 3 features, which were all true
positives but the rest 9 were false negatives, and the F-score was 40%

Note that for two subjects, gallery and twitter, it did not report any results.. and the overall F-

score of the baseline tool was 51.5%

Now we see the results of the FMAP tool.
RQ2 FEATURE MATCHING As shown, for the same subject PHPBB, FMAP could match 10 features instead of 3 and the
FMAP F-score was 95.2%.
Features Matched|T Pos|F Pos F Neg| T Neg F-score
S B 2Ll 2L Let me highlight the most challenging subject for FMAP — twitter. From the traces, we found
wordpress 29 8 8 7 | 00210 933%
drupal 133 12 [12 [o [ofo]o]o]oo0o% that the desktop and mobile versions were interacting with different servers, and on
phpbb (AR 10 10 0 1 |1]0|0] 952%
e o 5 clo contacting a twitter developer, we found that the mobile version was a legacy application.
e D R 236 - 223; We think that this is an exception, and that server-side is typically the same, because it favors
galiery 7%
wikipedia.org | 1 10 7 | o |1]if3]2]933% code re-use and eases maintenance.
stackoverflow.com| 18 14 10 9 | I {1]7]3] 900%
twitter.com 16 Il 2 0 | 8|8l e [iIN|ESss
Total 144 85 6l 58 3 151666 7 | 86.3%

In summary, the answer to RQ2 is YES, FMAP is effective in matching features, and thus

finding missing features. Its F-score is 86.3% as compared to the baseline’s 51.5%

RQ2: How effective is FMAP in matching
features between the desktop and

mobile versions of real web applications?
F-Score: 86.3% (FMAP)
51.5% (Baseline)

Moreover, 40 out of 56 features reported missing by FMAP were confirmed from user reports

and fixes to the web application later by the developers themselves.
4 0 This increases our confidence in FMAP’s ability to find missing features.

56

Missing features reported by FMAP
confirmed from user reports & software fixes

LIMITATIONS AND
FUTURE WORK

* Trace Collection:
+ General trace collection strategies
* Broader user population
* Intentionally omitted vs Missing features:
+ Both currently reported as missing features
+ Study distribution & account for omitted features

* White/Grey-box approach to identify features

While our approach is a good first attempt at this problem, it has certain limitations which

needs to be addressed by future work.

1)

3)

Our traces were collected by students. We could improve coverage of features in our
traces by collecting traces from a more realistic deployment and possibly from a broader
user population such as those obtained via crowd sourcing.

Secondly, features are sometimes omitted intentionally on certain platforms. Any
automated technique such as ours cannot distinguish between missing vs omitted
features. Future work should study the distribution of omitted vs missing features and
account for that in the technique.

Finally, our approach is black box in nature and the first attempt towards solving this

AlRdHEAC T
http://gatech.github.io/fmap

@ Open source tool release
» HTTP trace capture browser extension

» Feature matcher tool

@ Experimental data — Collected student traces

@ Documentation and Validation URLs

Our artifact has been approved by the AEC committee and is available on github.

It includes, our tool, the experimental data of student traces, documentation and URLs used

to validate the missing features.

RELATED WORK

* Cross-Browser Testing
[Roy Choudhary et. al,, Mesbah et. al,, Dallmeier et. al]

= Both presentation & function expected to be identical

* Inferring APl Migration Mappings

[Gokhale et. al,, Zhong et. al,, Robillard et. al.]
= Mapping atomic actions (functions) between APl versions

= |nput: population of pairs of equivalent traces

* Reverse Engineering of Web Applications
[Mesbah et. al,, Schur et. al, DiLucca et. al,, Elbaum et. al.]

= Generate model of web application

There are 3 sets of related work.

1

There is work on Cross-browser testing, where both presentation & function are expected
to be identical and any differences are reported as issues. However, in our case these are
expected to be different.

There is also a line of work is to infer APl migration mappings, which maps atomic actions
(i.e., functions) between different APl versions. These techniques take as an input a
population of pairs of equivalent traces. However, our technique needs to find this
equivalence.

The final set of related work is to reverse engineer web applications to generate a model

of a web application. This is an orthogonal problem and we believe that feature matching

In summary, | motivated the problem of finding missing features. | presented our technique

MISSING FEATURES APPROACH OVERVIEW

&2 Desktop [Mobile

for matching features with its evaluation and open source release of our artifact.

Thank you for your time! If you have any questions or comments please reach out to me at

shauvik [at] gmail.com

TT TV T 7V Y

http://gatech.github.io/fma

RQ2: How effective is FMAP in matching
features between the desktop and & Open source tool release

mobile versions of real web applications?

» HTTP trace capture browser extension

F-Score: 86.3% (FMAP) » Feature matcher tool

51.5% (Baseline) & Experimental data — Collected student traces

& Documentation and Validation URLs

