X-PERT: A Web Application Testing Tool for
Cross-Browser Inconsistency Detection’

Shauvik Roy Choudharyt, Mukul R. Prasad?, Alessandro Orsof

fCollege of Computing
Georgia Institute of Technology
Atlanta, GA, USA

{shauvik | orso}@cc.gatech.edu

ABSTRACT

Web applications are popular among developers because of
their ease of development and deployment through the ubig-
uitous web browsing platforms. However, differences in a
web application’s execution across different web browsers
can cause cross-browser inconsistencies (XBIs), which are a
serious concern for web developers. Identifying XBIs manu-
ally is a laborious and error-prone process. In this demo we
present X-PERT a tool for identifying XBIs in web appli-
cations automatically, without requiring any effort from the
developer. X-PERT implements a comprehensive technique
for identifying XBlIs and has been shown to be effective in
detecting real-world XBIs in our empirical evaluation. The
source code of X-PERT and XBI reports from our evalua-
tion are available at http://gatech.github.io/xpert.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Reliability, Verification

Keywords: Web Testing, Cross-browser Testing, Layout
Testing

1. INTRODUCTION

Web applications are increasingly being used for both per-
sonal and business activities. Users of such applications
might use any web browser to access them, and the appli-
cation is expected to behave consistently across these differ-
ent environments. However, web applications often exhibit
differences when executed in different browsers, leading to
cross-browser inconsistencies (XBIs). XBIs are discrepan-
cies between a web application’s appearance, behavior, or
both, when it is run on two different environments. XBIs
are not only fairly common, but also notoriously difficult to
identify and fix. For example, 5328 posts were created and
tagged with “cross-browser”, on stackoverflow.com over the

*This demo illustrates the implementation of a technique
presented at ICSE’13 [6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

ISSTA’14, July 21-25, 2014, San Jose, CA, USA

Copyright 2014 ACM 978-1-4503-2645-2/14/07...$15.00
http://dx.doi.org/10.1145/2610384.2628057

417

§Software Systems Innovation Group
Fujitsu Laboratories of America
Sunnyvale, CA, USA
mukul@us.fujitsu.com

past four years alone. Moreover, nearly 2000 of these posts
have been active during the past year [8].

In general, if XBls are not identified during testing, they
can adversely degrade the experience of the users of the web
application with the affected browser. In fact, as shown in
our evaluation of X-PERT, some XBIs completely prevent
users from accessing the functionality offered by the web
application, thereby rendering it useless on that particular
platform. XBIs are thus a serious concern for companies,
which rely on such applications for business or for creating
their public brand image. The current practice in industry
is to identify XBIs through manual inspection of the web
application screens across all the different browsers [2]. Such
testing is not only human intensive, but also error-prone.

Recent work on identifying XBlIs [7, 3, 5] has proposed
techniques that go beyond the state of the practice, focus
only on certain aspects of a web application’s execution,
and are well suited for specific types of XBlIs. For instance,
the WEBDIFF tool [7] uses computer vision to detect XBlIs,
whereas CROSST [3] uses graph isomorphism along with text
comparison to find XBIs. These tools, however, offer only
partial and imprecise solutions to the XBI detection prob-
lem. To address these limitations of existing techniques, we
proposed a technique, implemented in X-PERT, that inte-
grates a rich set of comparison techniques and orchestrates
them to apply each technique to the class of XBIs that it
is best suited to detect [6]. Our technique is an automated,
precise, and comprehensive approach for XBI detection and
is based on our findings from an extensive study of XBIs in
real-world applications.

This demo paper discusses the architecture and implemen-
tation details of the X-PERT tool and is organized as fol-
lows. Section 2 describes the different kinds of XBIs. Next,
we summarize the technique implemented in X-PERT in
Section 3. Section 4 presents details of our tool’s imple-
mentation along with its usage scenario. The evaluation of
X-PERT and related work are presented in Sections 5 and
6. Finally, we conclude in Section 7.

2. CROSS-BROWSER INCONSISTENCIES

To get a deeper understanding of XBIs, we performed
a systematic study of 100 real-world web applications [6].
Through this study, we were able to establish a classification
of XBIs, which further helped us in defining our technique,
described in the next section. In particular, we found three
main types of XBIs: structural, content, and behavior.

Structural XBIs: Such XBIs affect the structure, or
layout, of individual web pages. The web page structure is
essentially a particular arrangement of elements, which in
case of structural XBIs is erroneous in a particular browser.
For instance, the misalignment of one or more web page
elements on a given web page, in a particular browser, can
constitute a structural XBI. We found that this was the most
common category of XBIs, occurring in 57% of the subjects
with XBls.

Content XBIs: This kind of XBI is observed in the con-
tent of individual components on a web page. Such differ-
ences can occur, where the visual appearance of a web page
element, or the textual value of an element, are different
across two browsers. We further classify these two cases
as wvisual-content and text-content XBls. In our study, we
found that these XBIs occurred in 30% and 22% of the sites
with XBlIs respectively.

Behavioral XBIs: These type of XBIs involve differ-
ences in the behavior of individual widgets on a web page.
An example of such an XBI would be a button that performs
a particular action within one browser and a totally differ-
ent action, or no action at all, in another browser. Another
example of behavioral XBI is the presence of an HTML link,
which works in one browser but is broken in another one. In
our study, such XBIs occurred in 9% of the web applications
with XBls.

In summary, behavioral XBIs affect the functionality of
individual components, resulting in broken navigation be-
tween different screens. Structural and content XBls, con-
versely, involve differences in the arrangement or rendering
of elements on a particular web page. In the next section,
we describe how our technique detects each of these XBIs.

3. TECHNIQUE OVERVIEW

Algorithm 1 presents an overview of our XBI detection
technique. As shown in the algorithm, our technique takes
as input the URL of the home page of the web application
under test, url, and two browsers considered for the test-
ing, Br1 and Brs. The technique outputs a list of XBIs,
X. In this paper, we only summarize the main steps of the
algorithm (for all the details, see Reference [6]).

Model Generation via Crawling: The technique
starts by crawling the web application, in an identical fash-
ion, in each of the two browsers Br; and Bry. In this pro-
cess, it records the observed behavior as navigation models
M, and Mz. The model is captured as a labeled transi-
tion system, which represents the top-level structure of the
crawled web application. In the model, the states corre-
spond to web application screens, and each transition is la-
beled with a widget action that leads to a screen naviga-
tion. In addition to this navigation model, we also capture
the screen image and the DOM structure of the elements on
each observed screen. In the algorithm, this step is imple-
mented in function genCrawlModel (line 3).

Behavioral XBI Detection: The navigation models
M; and M, are checked for equivalence to uncover differ-
ences in behavior. To do this, the technique uses the graph
isomorphism checking algorithm for rooted labeled directed
graphs proposed in [3]. This algorithm is implemented in
the diffStateGraphs function (line 4), which produces a set
of differences (B) and a list PageMatchList of corresponding
web-page pairs S}, S? between M; and M,. B contains a
set of missing and/or mismatched transitions across pages,

418

Algorithm 1: X-PERT: Overall algorithm
Input

: url: URL of target web application
Bri, Bro: Two browsers

Output: X: List of XBIs

begin

X<+ 0

(My, M3) < genCrawlModel(url, Bry, Bra)

// Compare State Graphs

(B, PageMatchList) < diffStateGraphs(My, M2)

addErrors(B, X)

foreach (S}, S7) € PageMatchList do
// Compare matched web-page pair
DomMatchList; < matchDOMs(S}, S?)
LE + diffRelativeLayouts(S}, S?, DomMatchList;)
¢l « diff TextContent (S}, S?, DomMatchList;)

Civ — diﬁVisualContent(Sil, Siz7 DomMatchList;)

addErrors(LE,cY cT, x);

R AR I A

10
11

12 return X

representing differences in dynamic behavior. Thus, B rep-
resents the behavioral XBls detected by the algorithm and
is included in the final output X. PageMatchList contains
the mapping between corresponding screens across browsers
and is used to detect other kinds of XBIs (lines 6 — 13).

Matching screen elements: To be able to find XBlIs
on two matched pages S} and S?, X-PERT first computes
a list of corresponding DOM element pairs in these pages
(DomMatchList;). This computation is performed by func-
tion matchDOMs (line 7) and is based on a match index
metric for DOM element correspondence. The same metric,
which has been used in earlier work on XBIs [7, 5], is a value
in the range [0, 1] and is computed using a weighted combi-
nation of (1) the element’s DOM attributes, (2) its XPath
(i-e., path in the DOM tree—http://www.w3.org/TR/xpath/),
and (3) a hash value computed from its descendants in the
DOM tree. (See Reference [5] for further details.)

Structural XBI Detection: A key contribution of the
X-PERT technique was the notion of an alignment graph,
which is an abstraction of the layout of a web page that
captures the relative arrangement of all the elements on
that page. X-PERT extracts alignment graphs from dif-
ferent renderings of a given web page on different browsers
and compares them to detect structural XBls. This is imple-
mented by diffRelative Layouts (line 8 in Algorithm 1), which
compares pages S} and S? and extracts the set of relative-
layout differences £ that represent structural XBIs. (More
details about this technique can be found in Reference [6].)

Text-content XBI Detection: This step detects tex-
tual discrepancies in web page elements that contain text.
To detect this class of XBIs, the text-value of an element
is extracted from its DOM representation and compared
with that of its corresponding element from DomMatchList;.
In the algorithm, diffTextContent (line 9) implements this
checking and is computed over all the text bearing leaf nodes
in the DOM tree. (For more details, see the LDTD feature
for machine learning in [5].)

Visual-content XBI Detection: These XBIs repre-
sent differences in the visual appearance of individual page
elements (e.g., differences in the styling of text or back-
ground of an element across different browsers correspond
to visual-content XBIs). Such errors can only be observed
in the image representation of the elements. Hence, the tech-
nique measures the x? distance between the color histograms
of the element’s screen image. We also used this approach in

Y SR SRR
& & @
Bro;/vser 1 Browser 1 Behavioral
Crawler Model XBls
. — —\ Pair-wise) E———
Generation = Model Model
Wizard @ Capture é@ c ode '
N) | o | || Comparison >
£ Browser 2 @ Browser 2 Structural
Crawler Model XBls
O [P— =)
G =)
Browser 3 Browser 3 Content
User provides _Crawler) __Model) L)
Web App,
Browsers, and Browser-specific Models from Web Application
Configuration Crawlers Different Browsers XBls
Figure 1: High-level overview of X-PERT.
our CROSSCHECK approach [5]. However, in X-PERT, we
only apply this to the leaf DOM elements, where it is most ’ Differential Model Store ‘ ArE’;tsis A:ﬁfgs /\L:;G;:its
effective at detecting visual-content XBIs. This operation is Sooon Som Contont Stuct
. onten ructure -
implemented by function diff VisualContent (line 10). ‘ Capture H Extractor ‘ ’ Comparator ‘Comparator 8
All the XBIs detected by the technique are added to the 2
XBI list X (line 11) and reported to the developers. ’ e ‘ ‘ DOM Tree Mateher ‘ g
3
Selenium ‘ Graph Isomorphism Checker g
4. TOOL DESCRIPTION ’
X-PERT can work with any web application that runs ’ Web Browser ‘ Differential Model Loader
on desktop brows.ers.. Slnc.e .X-PERT. analyzes the cheyt- Model Capture Model Comparison
side of such applications, it is agnostic to any server-side

technology. X-PERT is written in Python and Java and
can run on a variety of desktop operating systems, including
Windows, Mac OS X, and Linux.

Figure 1 shows a high-level overview of X-PERT, which
operates as follows. First, the user invokes the web inter-
face of the tool and interacts with its model generation wiz-
ard. This web interface is implemented in Python using
the Flask framework (http://flask.pocoo.org) on the server-
side, and Twitter bootstrap (http://getbootstrap.com) and
jQuery (http://jquery.com) libraries on the client-side.

Once the user submits the subject web application’s URL
and model capture parameters to the wizard, X-PERT uses
this information to generate different crawler instances, one
for each browser. The generated models are then processed
by the model comparison module, which applies our pro-
posed technique to compare these models in a pair-wise fash-
ion. This model comparison module is a key contribution of
the X-PERT technique as it compares the different aspects
of the web application’s execution to uncover the three types
of XBls, which are then gathered, tabulated, and reported
to the user.

The architecture of X-PERT, shown in Figure 2, consists
of the model capture and comparison modules. Both these
modules are mainly implemented in Java. Further details of
the implementation are discussed below.

e The Model Capture module uses the CRAWLJAX tool [4],
which internally uses the Selenium testing framework
(http://seleniumhq.org) to explore the web application
in the different web browsers. We extended CRAWLJAX
to save the model from its exploration along with the
screenshot and DOM structure of each page. The DOM
structure is obtained by querying the browser through its

419

Figure 2: Architecture of X-PERT.

JavaScript interface and contains properties of each web
page element’s rendition. These properties include, for
each element, its textual content, style information, its
XPath location, its size, and its coordinates on screen.

e The Differential Model Store / Loader components are

used to persist and load the models to/from the file system
as XML files. These components are implemented using
the Object serialization support in Java and are essential
for the model capture and comparison components to op-
erate independently. For instance, model capture might
be run to collect models from different machines, whereas
model comparison may compare these models on a single
machine.

e Graph Isomorphism Checker: This module performs an
equivalence check between the graph based models from
the two browsers to identify mismatched states and tran-
sitions across the two models. These models are imple-
mented as Java objects and compared through a pair-wise
traversal of the two graphs.

e The DOM Tree Matcher module matches corresponding
elements on renderings of a web page across the different
browsers by computing the match index metric. This met-
ric considers the Levenshtein distance between the XPaths
of the elements, and is computed using the corresponding
implementation in the Apache StringUtils library.

e Content Comparator: This module performs textual anal-
ysis of corresponding elements to detect text-content
XBlIs. For detecting image-content XBls, it compares
screen images of the corresponding elements on the web
page by leveraging the OpenCV toolkit [1]. Specifically,

Table 1: Results of X-PERT’s empirical evaluation.

NAME BEHAV. | STRUCT. CONTENT ToTAL
TEXT IMAGE

T[] F T F|IT[F|T][]F T F
Organizer 1 0 9 0 0 0 0| 0] 10 0
GrantaBooks | 16 | 0 | 11 0 of o0 0| 0] 27 0
DesignTrust 2 0 5 3 0 0 0| O 7 3
DivineLife 710 3 6 1 0 o] 0] 11 6
SaiBaba 210 2 9 of o0 ofoO0 4 9
Breakaway 0 0| 10 2 0 0 0| 0] 10 2
Conference 2 0 3 0 1 0 1 0 7 0
Fisherman 1 0 3 1 0 1 1 0 5 2
Valleyforge 0 0 2 2 0 0 1 0 3 2
UniMelb 2|0 0 0 of o0 0 1 2 1
Konqueror 0 0 0 0 0 0 0 6 0 6
UBC 0|0 0 0 of o0 of o0 0 0
BMVBS 0|0 0 0 of o0 ofoO0 0 0
StarWars 0 0| 12 0 0 0 0 0| 12 0
TOTAL 33| 0] 60 | 23 2 1 3 7198 31

this image comparison measures the x> distance between
their color histograms to detect image-content XBlIs.

e Structure Comparator: The structure of the page ex-
tracted by the model capture module is analyzed by
the Layout Analysis module to create alignment graphs,
which represent the relative alignment of web page el-
ements. Another graph isomorphism checker was imple-
mented in Java to find differences in the alignment graphs
of corresponding screens.

e Report Generator: This module generates an HTML re-
port tabulating the set of detected XBls. It is im-
plemented using the Apache Velocity library (http://
velocity.apache.org). The generated reports leverage
jQuery along with the HTML5 Canvas for rendering and
highlighting the XBIs on the screen images. Behavioral
XBIs are presented in the HTML report by highlighting
them on the models converted to SVG format using the
GraphViz tool (http://www.graphviz.org/).

S. EVALUATION

To assess the usefulness of X-PERT, we ran it on 14 sub-
jects. These subjects are divided in three groups: the first
six subjects were used in prior work, the next four were from
our study, and the final four were obtained using an online
random URL service (http://www.uroulette.com/).

Our experiments were performed using the latest stable
versions of Internet Explorer (v9.0.9) and Mozilla Firefox
(v14.0.1). The results of our investigation of X-PERT’s
effectiveness are shown in Table 1, which lists, for each sub-
ject, the XBIs reported in the terms of true (T) and false
(F) positives. As shown in the table, X-PERT was effective
in finding different kinds of XBIs in the subjects. A deeper
investigation of the results [6] revealed that X-PERT’s pre-
cision and recall are 76% and 95%, respectively, against 18%
and 83% for the state-of-the-art tool CROSSCHECK [5].

6. RELATED WORK

To the best of our knowledge, X-PERT is the first tool
for comprehensive detection of XBls. Previous research
tools (e.g., [7, 5, 3]) only focused on certain types of is-
sues and had low precision and recall. Developers typically
use browser-compatibility tables, such as Quirksmode.org and
CanIUse.com, to check their web applications. Some web
development tools, such as Adobe Dreamweaver (http://
adobe . com/products/dreanweaver.html), provide basic static-
analysis based hints to help detect certain issues. How-

420

ever, the issues targeted by reference websites and devel-
opment tools are limited to features that are known to
be missing in a particular browser. Other tools, such as
BrowserShots (BrowserShots.org) and Microsoft Expression
Web SuperPreview (http://microsoft.com), provide pre-
views of single pages in different browsers, while tools such
as CrossBrowserTesting.com and BrowserStack.com allow for
browsing web applications in different emulated environ-
ments. In both cases, the comparison of the observed be-
havior across browsers must still be performed manually.

7. CONCLUSION

Cross-browser inconsistencies (XBIs) are a serious prob-
lem for web developers. Current industrial practice relies on
(expensive and error prone) manual inspection to find these
issues. Existing research tools, conversely, only target par-
ticular aspects of XBIs and can report a significant number
of false positives and negatives. To address these limita-
tions, we presented X-PERT, an open source tool for com-
prehensive XBI detection. Our empirical evaluation shows
the effectiveness of X-PERT over the state of the art. This
demonstration presents the details of the implementation of
X-PERT and illustrates how it is fully automated and easy
to use through its web interface. In addition, X-PERT gen-
erates easy to comprehend and actionable reports for the
developer, thus allowing them to address XBIs effectively.

ACKNOWLEDGEMENTS

This was work supported in part by NSF awards CCF-1161821,
CNS-1117167, and CCF-0964647 to Georgia Tech, and by a re-
search contract with Fujitsu Labs of America.

8. REFERENCES

[1] G. Bradski and A. Kaehler. Learning OpenCV. O’Reilly
Media, September 2008.
[2] J. Lewis. Techniques for mobile and responsive cross-browser
testing: An envato case study.
http://webuild.envato.com/blog/techniques-for-
mobile-and-responsive-cross-browser-testing/, 2013.
A. Mesbah and M. R. Prasad. Automated Cross-browser
Compatibility Testing. In Proceeding of the 33rd
International Conference on Software Engineering (ICSE),
pages 561-570. ACM, May 2011.
A. Mesbah, A. van Deursen, and S. Lenselink. Crawling
Ajax-based Web Applications through Dynamic Analysis of
User Interface State Changes. ACM Transactions on the
Web, 6(1):3:1-3:30, March 2012.
S. Roy Choudhary, M. R. Prasad, and A. Orso. CrossCheck:
Combining Crawling and Differencing to Better Detect
Cross-browser Incompatibilities in Web Applications. In
Proceedings of the IEEE Fifth International Conference on
Software Testing, Verification, and Validation (ICST),
pages 171-180. IEEE, April 2012.
S. Roy Choudhary, M. R. Prasad, and A. Orso. X-PERT:
Accurate Identification of Cross-browser Issues in Web
Applications. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages
702-711. IEEE Press, 2013.
S. Roy Choudhary, H. Versee, and A. Orso. WebDiff:
Automated Identification of Cross-browser Issues in Web
Applications. In Proceeding of the 2010 IEEE International
Conference on Software Maintenance (ICSM), pages 1-10.
IEEE, September 2010.
Stackoverflow. Posts for cross-browser issues.
http://data.stackexchange.com/stackoverflow/query/
77488/posts-for-cross-browser-issues, May 2014.

3

(4]

[5]

