
A Cross-browser Web Application Testing Tool1

Shauvik Roy Choudhary, Husayn Versee, Alessandro Orso
Georgia Institute of Technology

shauvik@cc.gatech.edu, hversee3@gatech.edu, orso@cc.gatech.edu

Abstract—Web applications have gained increased popularity

in the past decade due to the ubiquity of the web browser

across platforms. With the rapid evolution of web technologies,

the complexity of web applications has also grown, making

maintenance tasks harder. In particular, maintaining cross-

browser compliance is a challenging task for web developers,

as they must test their application on a variety of browsers and

platforms. Existing tools provide some support for this kind of

test, but developers are still required to identify and fix cross-

browser issues mainly through manual inspection. Our WEBDIFF

tool addresses the limitations of existing tools by (1) automatically

comparing the structural and visual characteristics of web pages

when they are rendered in different browsers, and (2) reporting

potential differences to developers. When used on nine real

web pages, WEBDIFF automatically identified 121 issues, out of

which 100 were actual problems. In this demo, we will present

WEBDIFF, its underlying technology, and several examples of its

use on real applications.

I. INTRODUCTION

Web applications follow a traditional client-server comput-
ing model: server-side components receive requests from a
client and generate and return responses to such requests.
These responses typically consist of HTML documents that
contain data, CSS style rules, and client-side scripting compo-
nents in the form of JavaScript (standardized as ECMAScript)
or VBScript. Over the past decade, web applications have
evolved from having extremely simple and thin clients to
having increasingly rich and complex client-side components.

With this increased complexity of web applications, the
maintenance effort required by developers has also increased
proportionally. In particular, because the web applications can
be run on a variety of web browsers and platforms on the client
side, cross-browser compatibility issues are prevalent in such
applications. (Current browser statistics report usage of seven
popular web browsers across different platforms [2].) Cross-

browser compatibility issues range from simple cosmetic prob-
lems in the user interface to critical functionality failures.
According to the latest statistics of the Mozilla’s Broken
Website Reporter [3], users have reported cross-browser issues
on 1,767,900 websites on 463,314 hosts. These figures include
12,072 web sites reported in the past week and 1,568 web
sites reported just in the last 24 hours. Because cross-browser
issues are observed on the client side (i.e., in the browser)
and directly affect the users, there is an increased interest
in identifying such issues during in-house testing, before the
software is released [4]. In addition, organizations are trying

1This demo illustrates the implementation of a technique presented in a
paper accepted for publication at ICSM 2010 [1].

to limit the number of officially supported browsers, which
can also negatively affect the user experience [5], [6].

A. State of the Art

Currently, for detecting cross-browser issues in a given web
page, developers must render the page in different browsers
and manually inspect the appearance and behavior of the page.
Commercial tools, such as Microsoft Expression Web [7] and
Adobe’s Browser Lab [8], can assist manual inspection by
presenting a side-by-side differential rendering of the web
application in two browsers. However, these tools still require
the developer to spend a considerable amount of effort in
manually identifying, understanding, and fixing the actual
cross-browser issues. Moreover, some functionality related
issues are difficult to spot by manual inspection, as they may
not result in readily observable differences.

There are only a few research tools that target cross-browser
issues. The compliance assessment technique presented by
Eaton and Memon [9] requires developers to manually provide
examples of correct and faulty (e.g., containing layout issues)
pages, which are then used to compute the probability of a
new HTML tag to be faulty. Although, this technique can be
useful for simple cases, it requires a considerable amount of
manual effort for tagging html pages. Moreover, it does not
consider client-side script and CSS style components. More
recently, Tamm developed a research tool that leverages both
DOM (Document Object Model — http://www.w3.org/DOM)
and visual information for finding layout bugs in a particular
browser [10]. Tamm’s tool is focused mainly on the text
portion of a page and identifies web page elements by hiding
and showing different elements at different times. In our prior
experience with a similar approach, we have discovered that
this approach is typically very expensive, as it must render
a page a potentially large number of times. Moreover, the
approach cannot detect many relevant issues, as it focuses
mostly on text elements. The VIPS algorithm [11] infers the
hierarchy of a web page from the page’s visual layout, rather
than from the DOM, by segmenting its screenshot into visual
blocks. A limitation of that approach is that it assumes that the
page follows a specific layout and groups regions of the page
accordingly. However, modern web pages have often complex
and creative layouts, and that technique is unlikely to work
in these cases. Moreover, disregarding the structural data in
the DOM prevents from reporting the specific location in the
HTML document that is responsible for an issue, which makes
it more difficult for developers to fix the issue.

ioana verebi
26th IEEE International Conference on Software Maintenance in Timișoara, Romania

ioana verebi
978-1-4244-8628-1/10/$26.00 ©2010 IEEE

ioana verebi

ioana verebi

B. Proposed Solution

To address the limitations of the existing techniques, we
developed WEBDIFF, a technique and tool for (1) detect-
ing cross-browser issues automatically and (2) reporting the
locations of such issues in the corresponding web page to
help developers fix them. WEBDIFF is based on the concept
of differential testing [12]. It loads a web page in different
environments and compares the behaviors of the page in such
environments; intuitively, a difference in behavior indicates a
potential problem.

Our tool can be used in isolation or in combination with
existing tools for functional testing, such as Selenium [13], and
existing test-input generation techniques for web applications
(e.g., [14]–[18]). These tools can be used to generate and run
inputs for the web applications under test, while WEBDIFF
can compare the web pages generated using such inputs on
multiple browsers and platforms.

To assess the effectiveness of WEBDIFF, we performed an
empirical evaluation in which we used our tool on nine real
web pages. Our results are promising: WEBDIFF automatically
identified 121 issues, out of which 100 were actual problems.
In this tool demonstration, we will present WEBDIFF, its
underlying technology, and several examples of its use on real
applications. In the rest of the paper, we describe in greater
detail our technique, results, and proposed demonstration.

II. OUR TECHNIQUE

As discussed above, our technique finds dissimilarities be-
tween the corresponding elements of a web page rendered
in different browsers, one of which is considered to be a
“reference browser”. Having a reference browser is important
to keep the number of comparisons low. Moreover, it mimics
a normal scenario where developers focus on making sure
that the web application behaves well in their browser of
choice and then check whether it behaves consistently in
other browsers. More precisely, the technique operates as
follows. Given a web page URL, it first opens the page in all
considered browsers. Second, it extracts from each browser the
DOM information and a screenshot of the rendered web page.
Third, it identifies variable elements on the reference browser’s
DOM and eliminates them from further consideration. Fourth,
it matches the nodes in the DOM tree hierarchy amongst
different browsers. Finally, for each pair of matched nodes, it
compares the attributes of the two nodes and the regions of the
screenshots corresponding to the nodes to find inconsistencies.
We explain each of these steps concisely in the following
sections. More details on the technique can be found in [1].

A. Data Collection

WEBDIFF launches the web page under test in all browsers
considered and adjusts the browsers’ window size such that
they are all equal. The browser size is obtained inside the
web application by a simple script and is communicated to
the tool that resizes the browser accordingly. More details
about the engineering of this step can be found in Section
IV. After the browsers are ready, WEBDIFF extracts the DOM

information of the web page and captures a screenshot for each
browser window. Specifically, the DOM information captured
by WEBDIFF for every DOM node consists of the following
properties:
• tagname: Name of the tag associated with the DOM element.
• id: Unique identifier of the DOM node, if defined.
• xpath: X-Path of the node in the DOM structure.
• coord: Absolute screen position of the DOM element.
• clickable: True if the DOM element has a click handler.
• visible: True if the DOM element is visible.
• zindex: DOM element’s screen stack order, if defined.
• hash: Checksum of the node’s textual content, if any.

WEBDIFF captures the screenshot of the web page by taking
a snapshot of the browser window and extracting just the
content in the viewport (i.e., the section of the browser where
the web page is rendered).

B. Detection of Variable Elements

Web Pages often have generated elements that differ across
executions, such as advertisements and statistics about the
page. Such variable elements must be ignored during com-
parison, as they are highly likely to result in false positives.
WEBDIFF detects variable elements by loading the web page
in the reference browser twice and comparing the DOM and
screenshot information obtained in the two cases. The intuition
is that the variable elements will likely vary in subsequent
requests. All DOM nodes that reveal either a structural or a
visual difference in this analysis are marked as variable and
ignored in the subsequent steps.

C. Cross-browser Comparison — Structural Analysis

The goal of this phase is to match the DOM nodes obtained
from different browsers for the same page. WEBDIFF traverses
the DOM trees for two browsers in parallel while searching for
the best matching nodes. While analyzing a pair of nodes, the
technique computes a match index, a number between zero and
one that represents how similar the two nodes are. The match
index is computed using the DOM properties that are recorded
in the previous step (see Section II-A). More precisely, two
nodes with the same id are marked as a perfect match, and so
are two nodes with the same xpath. If none of these conditions
is satisfied the match index for the two nodes is proportional
to the similarity of the xpaths for the nodes and the number of
other properties that have identical values. When all possible
node pairs have been considered, the matching node for a given
node n is the node m such that there is no other pair of nodes
that (1) contains n and (2) has a match index greater than the
match index for the pair (n,m). At the end of this step, each
node of the reference browser’s DOM is mapped to a node in
the DOMs of each other browser considered.

D. Cross-browser Comparison — Visual Analysis

The DOM does not have information on how web page ele-
ments exactly appear on screen. Therefore, our technique also
performs a visual analysis of the page. In this step, WEBDIFF
leverages the structural information computed in the previous

step to (1) identify corresponding elements in the browser
screenshots and (2) perform a graphical matching of such
elements. As a preliminary step of the graphical matching,
WEBDIFF grays out the areas corresponding to variable nodes
in the captured screenshots, so as to eliminate possible false
positives caused by them. It then checks for four classes of
issues: positional, size, visibility, and appearance differences.
Positional differences are found by checking the parent (or
container) nodes of matching HTML elements and the relative
position of the elements with respect to such container nodes.
Visibility and size differences are identified by comparing the
properties of two matching nodes. Finally, WEBDIFF identifies
appearance differences by graphically comparing the regions
of a web page that correspond to matching HTML elements.
The graphical comparison uses a histogram based technique
that can compute the distance between two images [19]. If
such distance is larger than a given threshold, the two elements
are reported as different in the two browsers considered.

III. USAGE SCENARIOS

Table I lists some scenarios in which the WEBDIFF tool can
be useful. In the first scenario, the tool assists the developers in
supporting a new web browser. The second scenario describes
the use of the tool for regression testing. In the final scenario,
WEBDIFF allows developers to reproduce an error that was
reported to them, thereby allowing them to investigate the
issue for resolving it. In general, WEBDIFF can be used in
a variety of scenarios for supporting software development
and maintenance tasks.

TABLE I
SCENARIOS OF USE FOR WEBDIFF.

Steps Expected Output
A new version of a browser is released.
Add the new browser ver-
sion to WEBDIFF and run
it on the web application.

List of issues in the web
pages of the web appli-
cation related to the new
browser version are re-
ported.

A new version of the application is released.
Exercise WEBDIFF on the
new version of the applica-
tion on all the considered
browsers.

List of issues introduced
in the new version are re-
ported to the developers.

A cross-browser issue needs to be reproduced.
Run WEBDIFF on the af-
fected web page of the
application on the specific
browsers.

The relevant issue gets
identified by WEBDIFF,
allowing the developer to
investigate it.

IV. THE TOOL

A. Architecture

Figure 1 shows a high level architecture of the tool. As
shown in the figure, the tool operates in a distributed manner.

The main controller runs in the host machine, and the web
browsers are installed in a virtual machine connected to it. This
setup allows the host to connect to multiple virtual machines,
which in turn allows browsers on multiple platforms to be
used for testing. Different conflicting versions of the same
browser can also be used with such a setup. For instance,
currently three different versions of Internet Explorer are
popularly used for web browsing and should therefore be
used for compatibility testing of web applications. The virtual
machine contains several browsers, controlled by the Data

Collection Engine. The Data Collection Engine consists of
three main components: a GUI Automation component, which
automates the tasks of launching browsers, opening web pages,
and performing actions on the web page; a DOM Extraction

component, which is a JavaScript tool to extract the tree based
DOM of the web page; and a Screen Capturing component,
which captures and saves the screenshot of a web page. The
host machine consists of the WEBDIFF Controller, which
is responsible for starting the Web Proxy and then remotely
starting the capture process on all virtual machines. The Web

Proxy is necessary to overcome the browser’s cross domain
restrictions. The DOM Extraction script submits the data back
to the location where the web page originated from. The
Web Proxy identifies the HTTP request as a data-capturing
request and redirects it to a local server side script that
saves the data in the Data Store on the host machine. The
Web Proxy also passes values between the JavaScript DOM

Extraction script inside the web page and the GUI Automation

tool. Similar to the data-capturing requests, the Web Proxy

handles the communication messages in a special manner.
These messages are essentially set and get requests to the
web service, such that one of them can retrieve the data set
by the other. Specifically, the GUI Automation tool reads the
scrollWidth and scrollHeight of the web page and
decides how much more the web page needs to be resized.

After the DOM and visual information have been collected
from the target web page, the Analysis Engine reads this
information and performs the steps explained in Section II:
variable element identification and cross-browser comparison.

B. Technologies Used

The components of WEBDIFF use a varied set of plat-
forms and libraries. Communication between the machines
is performed using the Software Testing and Automation
Framework (STAF),2 which is a P2P based cross-platform
automation platform. The security settings in STAF are con-
figured to allow the host to start the remote Data Collection

Engine process on each virtual machine. The GUI Automation

component in the Data Collection Engine process uses the
win32api

3 to access and perform activities on the web
browser window inside the Microsoft Windows virtual ma-
chine. The Screen Capturing tool uses the win32api to
obtain the browser window handle and the python image

2http://staf.sourceforge.net
3http://sourceforge.net/projects/pywin32/

Fig. 1. Architecture of WEBDIFF.

Fig. 2. Report generated by WEBDIFF.

library
4 to obtain and save the screen captures of a web

page. On the host machine, the WEBDIFF Controller and Web

Proxy are written in the python programming language, and
the latter uses the twisted 5 networking library for making
network connections. Inside the Analysis Engine, the Variable
Element Identification and DOM tree mapping components are
written in Java. The Cross-Browser Comparison component
is partly written in Java (for the part comparing matched
DOM locations) and partly in C using the Open Computer
Vision library6 (for the part performing image processing for
screenshot comparison).

4http://www.pythonware.com/library/
5http://twistedmatrix.com
6http://opencv.willowgarage.com

C. Reporting of Issues Found

Figure 2 shows a sample report generated by WEBDIFF.
The report is an HTML page that consists of two major
sections: visual section and data. The top visual section shows
a screenshot of the web page in the reference browser, along
with the same in another browser. This visual section can be
used by developers to quickly inspect the screenshots side by
side. The lower data section contains the list of issues found in
tabular format. The list contains the type of issue, the browser
on which it was found, and the corresponding screen and DOM
locations of the element that manifested the issue. As the figure
shows, the WEBDIFF report is intuitive and can be useful to
find and fix cross-browser issues.

Fig. 3. Georgia Tech web site.

V. EVALUATION

For evaluating our tool, we selected three widely used web
browsers: Mozilla Firefox7 (Version 3.6), Google Chrome8

(Version 4.1), and Internet Explorer9 (Version 8.0). We in-
stalled the browsers in a Microsoft Windows XP virtual
machine. For the evaluation, we selected nine web pages as
subjects. The first subject is the front page of our institutional
web site, http://www.gatech.edu, shown in Figure 3. As it can
be seen in the figure, the web site uses a professional template
and makes use of a variety of HTML features. This page was
selected due to our prior knowledge of its cross-browser issues,
so that we could check whether WEBDIFF identified them.
Some of these issues are clearly visible in Figure 4: in the
web page, some elements appear shifted to the right when
compared to the page shown in Figure 3.

The remaining eight pages that we used for the study were
chosen randomly. To perform a fair sampling of subjects, we
picked them using a random link generator service provided by
Yahoo! (http://random.yahoo.com/bin/ryl). The complete list
of web pages considered is shown in Table II. As the table
shows, the list includes a wide range of web applications,
ranging from static informational web pages to commercial
web sites.

The results of our study are shown in Table III. The numbers
listed in the table are the total number of issues found while
comparing the web pages rendered in Firefox (considered as
the reference browser) with pages rendered in Chrome and
Internet Explorer. The table reports, for each subject, the
different types of cross-browser issues identified by WEBDIFF

7http://www.mozilla.com/firefox/
8http://www.google.com/chrome
9http://www.microsoft.com/windows/internet-explorer/

Fig. 4. Issues with Georgia Tech’s web site: shifted elements in IE.

that were manually confirmed as true positives: positional
differences (Pos.), changes in size (Size), visual differences
(Vis.), and general appearance differences (Gen.). In addition,
the table shows the total number of true positives (Tot.) and
the total number of false positive (FP) reported.

As the results in Table III show, WEBDIFF was able to
automatically discover and report a large number of cross-
browser issues: 121 issues of different types overall. In par-
ticular, WEBDIFF was able to identify the known issues in
the Georgia Tech web site. WEBDIFF reported a total of 21
false positives for the nine subjects considered in the study.
This corresponds to a 17% false positive ratio, which can be
considered acceptable given that WEBDIFF is the first tool for
automatically detecting such problems. Moreover, in six out
of nine subjects (a majority), the false positive rate is even
lower. Manual analysis of the results showed that the false
positives reported by the tool were due to (1) minor differences
in some elements containing text and background images that
are mostly unnoticeable for the human eye and (2) presence of
some variable elements that WEBDIFF failed to identify. After
studying the issues, we believe that they can be eliminated by
careful engineering of the tool.

We also performed a manual checking of the web pages
considered in the study, and the checking did not reveal any
additional cross-browser issue that our tool had not revealed.
In other words, to the best of our knowledge, the tool generated
no false negatives.

One last point that is worth discussing is the cost of our
approach. The analysis time for each of the nine web pages
was less than five minutes. Because WEBDIFF can be run
overnight, this time is definitely acceptable. We therefore did
not perform any more detailed study of the performance of
WEBDIFF.

TABLE II
SUBJECTS USED FOR THE STUDY.

Subject URL Type
GATECH http://www.gatech.edu university
BECKER http://www.beckerelectric.com company
CHESNUT http://www.chestnutridgecabin.com lodge
CRSTI http://www.crsti.org hospital
DUICTRL http://www.duicentral.com laywer
JTWED http://www.jtweddings.com photography
ORTHO http://www.otorohanga.co.nz informational
PROTOOLS http://www.protoolsexpress.com company
SPEED http://www.speedsound.com e-commerce

TABLE III
NUMBER OF CROSS-BROWSER ISSUES IDENTIFIED.

Faults identified

Subject Pos. Size Vis. Gen. Tot. FP

GATECH 2 3 0 1 6 0
BECKER 2 12 0 2 16 1
CHESNUT 8 4 0 2 14 2
CRSTI 4 4 0 2 9 0
DUICTRL 9 8 0 2 19 4
JTWED 3 9 0 1 14 0
ORTHO 0 0 0 2 2 2
PROTOOLS 4 5 0 2 11 9
SPEED 23 5 0 2 30 3
Total 55 50 0 16 121 21

VI. CONCLUSION

Cross-browser issues are increasingly prevalent, and achiev-
ing consistent behavior across all major browsers has been
a serious concern for web application developers. Current
techniques for detecting and fixing such issues are immature
and require a considerable amount of manual work from the
developers. Our tool, WEBDIFF, addresses the limitations of
existing techniques by automatically identifying cross-browser
issues. To do so, WEBDIFF compares web pages by leveraging
both their structural (web page’s DOM) and visual (web page’s
snapshots) characteristics. We evaluated WEBDIFF on nine
real world web applications, and the results of the evaluation
show that the tool is effective in identifying cross-browser
issues while keeping the false positive rate low.

This demo paper presented our tool, its underlying tech-
nique, and some of its implementation details. The paper
also presented some possible scenarios of usage for the tool
and our initial empirical evaluation. In future work, we will
investigate ways to further lower the number of false positives
(e.g., by better detecting variable elements and improving
the accuracy of our graphical matching) and to improve
the tool based on feedback from our users. We will also
perform more experiments on additional subjects to confirm
our initial results. In the longer term, we will investigate the
use of our approach to evaluate behavioral equivalence of web
applications that can run not only in different browsers, but
also on completely different platforms (e.g., web applications
running on both desktop and mobile platforms).

TOOL AVAILABILITY

The tool has been released under MIT license, for public
download and use. More information about the tool can be
found at the following location: http://www.cc.gatech.edu/
∼shauvik/webdiff.php

ACKNOWLEDGMENTS

This work was supported in part by the NSF awards CCF-
0916605 and CCF-0725202 to Georgia Tech.

REFERENCES

[1] S. Roy Choudhary and A. Orso, “Webdiff: Automated identification of
cross-browser issues in web applications,” in ICSM ’10: Proceedings

of the International Conference on Software Maintenance. IEEE,
September 2010.

[2] W3Schools.com, “Browser statistics month by month,” http://www.
w3schools.com/browsers/browsers stats.asp, May 2010.

[3] Mozilla, “Firefox broken website reporter,” http://reporter.mozilla.org/
app/stats/, July 2010.

[4] Cambridge Network, “Estate agents must update web browser compati-
bility ahead of microsoft announcement,” http://www.cambridgenetwork.
co.uk/news/article/default.aspx?objid=69332, March 2010.

[5] The Korea Times, “Korea sticking to aging browser,” http://
www.koreatimes.co.kr/www/news/biz/2010/02/123 61463.html, Febru-
ary 2010.

[6] N. Gohring (IDG News), “Google to end support for ie6,” http://www.
pcworld.com/article/188190/google to end support for ie6.html, Jan-
uary 2010.

[7] Microsoft, “Expression web,” http://www.microsoft.com/expression/
products/Web Overview.aspx, May 2010.

[8] Adobe, “Browser lab,” https://browserlab.adobe.com/, May 2010.
[9] C. Eaton and A. M. Memon, “An empirical approach to evaluating web

application compliance across diverse client platform configurations,”
Int. J. Web Eng. Technol., vol. 3, no. 3, pp. 227–253, 2007.

[10] M. Tamm, “Fighting layout bugs,” http://code.google.com/p/
fighting-layout-bugs/, October 2009.

[11] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, “Vips: a vision-based page
segmentation algorithm,” Microsoft Research, Tech. Rep., November
2003.

[12] W. M. McKeeman, “Differential testing for software,” Digital Technical

Journal, vol. 10(1), pp. 100–107, 1998.
[13] OpenQA, “Selenium web application testing system,” http://seleniumhq.

org/, May 2010.
[14] D. Roest, A. Mesbah, and A. v. Deursen, “Regression testing ajax

applications: Coping with dynamism,” in Software Testing, Verification

and Validation (ICST), 2010 Third International Conference on, 6-10
2010, pp. 127 –136.

[15] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D.
Ernst, “Finding bugs in dynamic web applications,” in ISSTA ’08:

Proceedings of the 2008 international symposium on Software testing

and analysis, 2008, pp. 261–272.
[16] F. Ricca and P. Tonella, “Analysis and testing of web applications,” in

ICSE ’01: Proceedings of the 23rd International Conference on Software

Engineering. Washington, DC, USA: IEEE Computer Society, 2001,
pp. 25–34.

[17] X. Jia and H. Liu, “Rigorous and automatic testing of web applications,”
in In 6th IASTED International Conference on Software Engineering and

Applications (SEA 2002, 2002, pp. 280–285.
[18] W. G. J. Halfond and A. Orso, “Improving test case generation for

web applications using automated interface discovery,” in ESEC-FSE

’07: Proceedings of the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering. ACM, 2007, pp. 145–154.
[19] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as

a metric for image retrieval,” International Journal of Computer Vision,
vol. 40, pp. 99–121, 2000.

