
CROSSCHECK: Combining Crawling and Differencing To
Better Detect Cross-browser Incompatibilities in Web Applications

Shauvik Roy Choudhary∗
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332–0280
Email: shauvik@cc.gatech.edu

Mukul R. Prasad
Software Systems Innovation Group

Fujitsu Laboratories of America
Sunnyvale, California 94085

Email: mukul.prasad@us.fujitsu.com

Alessandro Orso
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332–0280
Email: orso@cc.gatech.edu

Abstract—One of the consequences of the continuous and
rapid evolution of web technologies is the amount of in-
consistencies between web browsers implementations. Such
inconsistencies can result in cross-browser incompatibilities
(XBIs)—situations in which the same web application can
behave differently when run on different browsers. In some
cases, XBIs consist of tolerable cosmetic differences. In other
cases, however, they may completely prevent users from
accessing part of a web application’s functionality. Despite
the prevalence of XBIs, there are hardly any tools that can
help web developers detect and correct such issues. In fact,
most existing approaches against XBIs involve a considerable
amount of manual effort and are consequently extremely time
consuming and error prone. In recent work, we have presented
two complementary approaches, WEBDIFF and CROSST, for
automatically detecting and reporting XBIs. In this paper, we
present CROSSCHECK, a more powerful and comprehensive
technique and tool for XBI detection that combines and adapts
these two approaches in a way that leverages their respective
strengths. The paper also presents an empirical evaluation
of CROSSCHECK on a set of real-world web applications.
The results of our experiments show that CROSSCHECK is
both effective and efficient in detecting XBIs, and that it can
outperform existing techniques.

Keywords-web testing, dynamic analysis, machine learning.

I. INTRODUCTION

Web applications are playing an ever increasing role
in our daily lives. From entertainment to business work-
flow and from commerce and banking to social interaction,
web applications are rapidly becoming a feasible, when not
the dominant option for conducting such activities. Web
applications are typically accessed through a web browser.
Currently, users have the choice of using several web
browsers, with the implicit expectation that web applications
will behave consistently across all different browsers. Un-
fortunately, this is often not the case. Web applications can
differ in look, feel, and functionality when run in different
browsers. We call such differences, which may range from
minor cosmetic differences to crucial functional flaws, cross-
browser incompatibilities (XBIs).

Several recent technology trends have been contributing
to the prevalence and growth of XBIs. The demand for
content-rich, interactive web applications, in particular, cou-
pled with the development of technologies such as AJAX

∗ This author was an Intern at Fujitsu Laboratories of America at the
time this work was performed.

(Asynchronous JavaScript And XML) [1] and Flash, has
led to web applications that provide significant parts of their
functionality on the client-side (i.e., within the web browser).
Since the standards for many client-side technologies are still
evolving, each browser implements a slightly different ver-
sion of these technologies and their runtime environments.
This is a major source of XBIs, and the recent explosion
in the number of browsers [2], computing platforms, and
combinations thereof has further exacerbated the problem.

The current industrial practice for performing cross-
browser testing largely consists of manually browsing
and visually inspecting a web application under different
browsers. The few available industrial tools and services
(e.g., [3], [4]) that support this task focus largely on behavior
emulation under different browsers or platforms, but do little
in terms of automated comparison of these behaviors. That
aspect remains largely manual, ad hoc, and hence error
prone.

In recent work, the authors have proposed two com-
plementary approaches for automatically detecting XBIs:
WEBDIFF and CROSST. WEBDIFF [5] operates on single
web pages and focuses on finding XBIs that can be detected
through visual analysis. In contrast, CROSST [6] can ana-
lyze entire web applications, using dynamic crawling, and
focuses on finding functional XBIs. In this paper, we present
CROSSCHECK, a new technique and tool that combines and
adapts these two approaches. CROSSCHECK leverages the
strengths of WEBDIFF (precision in detecting visual differ-
ences) and CROSST (ability to crawl and detect functional
differences) while mitigating their shortcomings. In defining
CROSSCHECK, we also improved several core elements of
the original techniques to further enhance the effectiveness
of the combined approach. In particular, CROSSCHECK
leverages machine learning to build a more accurate detector
for visual differences, and uses a new and improved metric
for image comparison. We also present an evaluation in
which we used CROSSCHECK on a set of real-world web
applications with real XBIs. The results of the evaluation
are promising and show that CROSSCHECK is both efficient
and effective in detecting XBIs in web applications.

The key contributions of this work are:

• CROSSCHECK, a new technique and tool for detecting
both visual and functional XBIs in web applications.

• A new, powerful machine learning-based technique to
detect visual XBIs.

• A novel algorithm to cluster related visual and func-
tional differences that can report more meaningful XBIs
that are easier to comprehend for the end-user.

• An evaluation of CROSSCHECK on several real-world
web applications that shows its effectiveness in detect-
ing real XBIs.

The rest of the paper is organized as follows. Section II
introduces some key concepts and terminology to define the
scope and nature of XBIs which is then illustrated in an
example web application in Section III. Section IV surveys
related work on cross-browser testing. We describe our
proposed technique in Section V and our tool implementing
it in Section VI. Sections VII, VIII present the empirical
evaluation of CROSSCHECK along with results, which is
followed by concluding remarks in Section IX.

II. BACKGROUND

A. Web Application
Web applications are based on a client-server computing

model. In a typical scenario, a human user interacts with the
client-side of a web application through a web browser that
runs on a computing device (e.g., a desktop PC). Users view
web pages, enter data, and perform actions, such as clicks,
on widgets (e.g., buttons or hyper-links). These interactions
generate requests to the server, and the server responds to
such requests with updates to the current web page, encoded
in HTML (Hyper-Text Markup language) or XML (eXten-
sible Markup Language), and to other associated resources,
such as style information in CSS (Cascading Style Sheets),
client-side code (e.g., JavaScript), images, and so on. These
resources are then used to compute and render an updated
web page in the web browser. The recent trend is to handle
an increasing portion of the user interactions entirely on the
client side, using JavaScript code and other components,
such as Flash, to compute responses and updates to the
current web page. In fact, many of the web pages viewed by
the user may have no corresponding REST-based [7] URI.
This is typical of several modern web applications based on
the AJAX paradigm.

B. The Web Browser: A Source of Cross-browser Differences
Modern web browsers are fairly sophisticated applications

comprised of a number of components. A typical architec-
ture of a web browser is presented in [8]. Of the many
functional components at work in a browser, there are three
that are of specific interest for understanding the reasons for
cross-browser issues. The first and most important among
them is the layout engine, which is responsible for rendering
a web page by combining the structural information in the
HTML for the page with the style information in CSS
stylesheets. The browser also maintains a DOM (Document
Object Model) representation of the page in memory to allow
client-side scripts (e.g., JavaScript code) to modify the web
page dynamically. The layout engine is the primary source
of cross-browser differences, as the same HTML/DOM
and CSS can produce different-looking pages in different

browsers. The second component is the event-processing
engine, or the DOM engine, which couples a user action,
such as a mouse click on a specific location, with the
execution of specific event-handling client-side code. This
engine also performs changes in the DOM based on the
DOM-API of the browsers. Browsers also differ in their
event-handling algorithms, as well as in the DOM-API they
support. This is another source of cross-browser differences.
Thus, the same user action can produce a different change
to the DOM. A third source of difference is the JavaScript
engine—the runtime environment for executing JavaScript
code within the browser. Subtle but definite differences
exist between the JavaScript engines of different browsers,
which result in differences in behavior. It is noteworthy
that standards do exist for various client-side technologies,
such as HTML, CSS, DOM, and ECMA-Script. However,
browsers typically implement their own variants of these
standards.

C. Cross-browser Incompatibilities

XBIs can manifest in two ways: (1) on individual web-
pages or (2) in the dynamic behavior of the web application
in transitioning from one web page (state) to another in re-
sponse to a user interaction. We term the former screen-level
differences, and the latter trace-level differences. Screen-
level differences can in turn be either visual differences—
differences in the visual appearance of one or more widgets
on a web page—or DOM-level differences. In order to
provide a comprehensive solution, we detect and harness
all three kinds of cross-browser differences, that is, visual
(screen-level), DOM (screen-level) and trace-level. It is
worth noting that a single cross-browser issue can result
in several differences of one or more of the kinds we just
discussed. For example, a malformed widget on a browser
may result in a visual difference of that widget, several
differences at the DOM level, and a missing state-transition
as result of a click on that widget. We make a distinction
between a cross-browser difference (CBD) and a cross-
browser incompatibility (XBI). A CBD refers to a single
difference (of one of the three kinds) of a specific property
of a particular element. An XBI refers to a set of related
CBDs that can be viewed, analyzed, and debugged by the
developer as a single error. Thus, CBDs are symptoms of
XBIs. We would like to detect CBDs but report XBIs to the
web application developer.

D. Machine Learning

Machine learning [9] is a branch of artificial intelligence
that aims to develop algorithms that allow computers to
learn behaviors from empirical data. Specifically, learning
is interpreted in the sense of inductive inference, where
one observes data representing incomplete information about
a statistical phenomenon and generalizes it into rules to
either (1) discover hidden properties of that data or (2)
make predictions about future instances of related data.
This work makes use of a branch of machine learning
called supervised learning. Supervised learning deals with
the pattern recognition or the classification problem. The

Figure 1. State graph for MyRestaurant in Mozilla Firefox.

aim is to learn a function that maps input properties of
data (called features) into a label of one of a finite set
of discrete classes, for each instance of data. This function
(termed a classifier) is learned from a set of data, where
each data instance has been manually labelled to the desired
class based on its features. This is called the training phase.
Subsequently, this classifier can be used to label, new future
instances of data. This is called the testing phase.

Several different kinds of classifiers exist, which differ
in terms of their learning algorithm and the underlying
topology of the learnt model. The choice of the classifier
is typically driven by the size and nature of the dataset to
be analyzed. For this work, we have chosen to use a Decision
Tree classifier [10]. Decision trees are simple, intuitive, and
effective classifiers that work well for relatively small data
sets with only a few features. This is indeed the case for
our problem, in contrast to other machine learning problems
involving datasets with millions of records and/or dozens
or even hundreds of features. Decision tree classifiers are
typically constructed by repeatedly partitioning the input
(feature) space so as to build a tree whose leaf nodes contain
only instances of a single class. The C4.5 implementation
of Decision Trees by Quinlan [10] is widely used, and our
tool uses a version of this implementation.

E. Terminology
In this paper, we use the term web page, web screen, or

screen to denote any distinct page that the end-user can view
within a web browser. Any visual change to this page would
constitute a new web page. We also use the term state to
indicate an abstraction of a web page computed using its
DOM representation (i.e., web pages with different DOMs
correspond to different states). Every DOM element has a
physical visual representation on a web-page. We use the
term screen element when referring to a DOM element in
conjunction with its visual footprint on the web page.

III. MOTIVATING EXAMPLE

In this section, we introduce a simple web application that
we use as a motivating example to illustrate XBIs and our
technique. The application MyRestaurant displays the food

(a) Mozilla Firefox (b) Internet Explorer

Figure 2. One page of MyRestaurant rendered in two browsers.

items available at a fictitious restaurant. The user can interact
with the page elements to view the food items available for
lunch or dinner.

For brevity, we do not present the complete source code of
the web application but explain its operation and causes of
XBIs with short code snippets. The web page shows the
name of the restaurant in the header, followed by menu
images and a container box. This container is supposed
to show the food items available for a particular selection.
It also has a drop-down menu that provides an alternative
way for the user to make a selection. Figure 1 shows the
state graph extracted by a web crawler, such as CRAWL-
JAX (http://crawljax.org), by navigating and exercising the
different pages of a the web application in a web browser
(Mozilla Firefox, in this case). The state graph consists of
three nodes, each representing a state of the web application,
and six edges that represent transitions between these states
as a result of user actions on page elements.

However, when the MyRestaurant application is run in
Internet Explorer (IE), it results in the following XBIs with
respect to the application run in Mozilla Firefox: (1) there
is no response when the user clicks on one of the two menu
images (Lunch and Dinner), (2) the header has a brown
shadow in Firefox that does not appear in IE, and (3) the
count of the food items is shown as ’undefined’ in IE.

XBIs 2 and 3 can be seen in the ‘lunch‘ state of both
browsers presented side by side in Figure 2. The first XBI
manifests itself in the four state transitions shown by dotted
lines in Figure 1. These transitions are missing from the
state graph for IE. This XBI occurs because of the following
HTML code:

Here, the developer assigned an onclick event to the
menu image that calls the JavaScript function listItems.
This call fails in IE because of the lack of support for the
onclick attribute of the tag. Consequently, the
expected state transitions do not happen in IE. This XBI
exposes a functional flaw, as the user cannot access the
desired content through the two menu images in IE.

The second XBI is attributable to the following CSS:
h1{text-shadow: brown 2px 2px 2px;}

http://crawljax.org

According to this CSS snippet, the header should have a
brown shadow. This shadow is absent in IE because it does
not support the text-shadow property.

Finally, the third XBI stems from the JavaScript code,
which is supposed to show the count of the number of food
items.
var txt = $("items").childElementCount

+ " dishes in menu!";
$("stats").innerHTML = txt;

This is obtained by querying the number of child
nodes of the list element located by id "items". The
string is built with this count and assigned to the ele-
ment with identifier "stats". Because the DOM property
childElementCount is not supported in IE, the browser
returns ’undefined’, which is the equivalent of null in
JavaScript, resulting in the XBI. Note that, for conciseness,
we use a custom library function $("id") to locate an
HTML element that would normally be accessed by calling
document.getElementById("id").

IV. RELATED WORK

A. Cross-platform Visualization & Emulation
Recent years have seen a spate of tool and web-services

that can either visualize a web-page under different client-
side platforms (browser-OS combination) or, more generally,
provide an emulation environment for browsing a web appli-
cation under different client platforms. Some representatives
of the former include BrowserShots (http://browsershots.org)
and BrowserCam (http://www.browsercam.com), while ex-
amples of the latter include Adobe BrowserLab [3], Cross-
BrowserTesting.com and Microsoft Expression Web [4]. For
a more detailed list, the interested reader is referred to [6].
A common drawback of all these tools is that they focus
on the relatively easy part of visualizing browser behavior
under different environments, while leaving to the user the
difficult, manually intensive task of checking consistency.
Further, since they do not automatically explore the dynamic
state-space of the web application, they potentially leave
many errors undetected.

B. Early Work on Cross-platform Error Detection
The technique of Eaton and Memon [11] is among the

earliest works in this area. Their technique tries to identify
potentially problematic HTML tags in a given web page,
based on a manual classification of good and faulty pages
previously generated by the user. However, XBIs in modern
web applications are usually not attributable simply to
specific HTML tags, but rather to complex interactions of
HTML structure, CSS styles and dynamic DOM changes
through client-side code. More recently, Tamm [12] pre-
sented a tool to find layout faults in a single page, with
respect to a given web browser, by using DOM and visual
information. The tool requires the user to manually alter the
web page—hide and show elements—while taking screen-
shots. This technique is not only too manually intensive to
scale to large web applications, but also virtually impossible
to apply to dynamically generated pages (i.e., most of the
pages in real-world applications). Finally, its focus is not
specifically cross-browser testing.

C. Test Suites for Web Browsers

Acid Tests [13], which are part of the Web Standards
Project, are a set of 100 tests that check a given web browser
for enforcement of various W3C and ECMA standards. Sim-
ilarly, the test262 suite [14] (formerly called SputnikTests)
can check a JavaScript engine (of a web browser) against
the ECMA-262 specification. It is noteworthy that in an
experiment we ran, Mozilla Firefox 7.0.1 failed 187 of the
11016 tests in the test262 suite, Google Chrome 15.0 failed
416 tests, and Internet Explorer 9 failed 322 tests. In other
words, the JavaScript engines of these popular browsers are
not standard and differ from one another. These suites reveal
some of these differences and justify the development of
techniques to identify XBIs.

D. WEBDIFF and CROSST

Our WEBDIFF [5] and CROSST [6] techniques provide
the foundations of the approach we propose in this paper.
WEBDIFF detects XBIs on a single web page through a two-
step process. First, it performs a DOM-matching step to find
pairs of corresponding screen elements between renderings
of the page in two different browsers. Subsequently, it
performs visual comparison of these pairs of screen elements
to find XBIs. The visual comparison uses a hand-crafted
heuristic that considers several visual properties of the screen
elements. By contrast, CROSST focuses on finding trace-
level XBIs in the dynamic state-space of a web application.
It uses automatic crawling to build a graph of the state-
space of a web application under two given browsers. It
then checks whether the two graphs are isomorphic to detect
trace-level XBIs. CROSST also performs a basic DOM-level
differencing of matched states to find DOM-level differences
(although this differencing can generate a large number of
false positives). Our proposed technique combines these two
complementary techniques, as we discuss in detail in the
next section.

V. OUR APPROACH

The following elements characterize our combined ap-
proach for XBI detection:
• WEBDIFF detects screen-level XBIs, while CROSST’s

strength is trace-level XBIs. CROSSCHECK employs
these techniques in these respective capacities. A side
benefit of this combination is that the crawling enables
dynamically generated screens to be checked by visual
comparison.

• WEBDIFF uses DOM matching specifically to detect
corresponding screen elements to visually compare,
while CROSST uses it as the sole basis for screen-level
XBI detection. In doing so, the former can overlook
useful symptoms of XBI detection, while the latter can
generate too many false positives. We observed that
DOM-level differencing can be used as an efficient and
reliable detector for textual differences (vs. visual dif-
ferencing). CROSSCHECK incorporates this capability.

• CROSSCHECK uses machine learning to build a clas-
sifier for visual comparison of screen elements. This

http://browsershots.org
http://www.browsercam.com

provides a dramatic improvement over the rather sim-
plistic DOM-differencing used for screen comparison
in CROSST. It is also significantly better than the
hand-crafted heuristic for visual comparison used in
WEBDIFF, which is difficult to re-target and tends to
miss many visual differences. Furthermore, the CROSS-
CHECK classifier actually combines DOM-differencing
features with strict visual-comparison ones to provide
a more comprehensive predictor.

Algorithm 1: CROSSCHECK
/* CrossCheck -- Overall algorithm. */
Input : url: URL of target web application

Br1, Br2: Two browsers
C: screen-element match classifier

Output: L: List of XBIs

1 begin
2 (M1,M2)← genCrawlModel(url, Br1, Br2)

// Compare State Graphs
3 (T , ScreenMatchList)← traceEquivCheck(M1,M2)
4 foreach (S1

i , S
2
i) ∈ ScreenMatchList do

// Compare matched screen pair
5 DomMatchListi ← matchDOMs(S1

i , S
2
i)

6 Vi ← ∅
7 foreach (n1

j , n
2
j) ∈ DomMatchListi do

// Compare matched screen-element pair
8 if ¬visualMatch(n1

j , n
2
j , C) then

9 Vi ← Vi ∪ (n1
j , n

2
j)

10 end
11 end
12 end
13 L ← computeXBIs(T ,V, ScreenMatchList)
14 return L
15 end

Algorithm 1 presents our overall approach. The algo-
rithm’s input consists of the URL of the starting page of the
target web application, the two browsers for cross-browser
testing, and a classifier C used for visual comparison. It is
assumed that this classifier has been created in an offline
training phase, using machine learning. The details of the
specific training used for CROSSCHECK are discussed in
Section VI.

The CROSSCHECK approach consists of three phases. The
first phase automatically crawls the target web application
within each of the two browser environments. While doing
so, it captures and records the observed behavior in the
form of two navigation models, M1 and M2, one for
each browser. The crawling is performed in an identical
fashion under each browser, so as to exercise precisely
the same set of user-interaction sequences within the web
application in both cases. This phase is implemented by
function genCrawlModel() in Algorithm 1 (line 2).

The second phase compares models M1 and M2 to check
whether they are equivalent and extract a set of model
differences, which may represent one or more potential XBIs
(lines 3-12).

The third phase analyzes this set of model differences
and collates them into a set of XBIs, which are then
presented to the end-user. This operation is implemented by
function computeXBIs() (line 13).

The following sections present further details of these
three phases.

A. Phase 1: Crawling and Model Capture

This phase explores the state-space of the web application
under test using an approach broadly based on CRAWL-
JAX [15], [16]. CRAWLJAX is a crawler capable of exercising
client-side code, detecting and executing doorways (click-
ables) to various dynamic states of modern (AJAX-based)
web applications. By firing events on the user interface
elements, and analyzing the effects on the dynamic DOM
tree in a real browser before and after the event, the crawler
incrementally builds a state machine capturing the states of
the user interface and the possible event-based transitions
between them. CRAWLJAX is fully configurable in terms of
the type of elements that should be examined or ignored
during the crawling process. (For more details about the
architecture, algorithms, and capabilities of CRAWLJAX, see
Reference [15], [16].)

CROSSCHECK implements an observer module on top
of the core crawler. The observer captures and stores a
finite-state navigation model, M , of the behavior observed
during the crawling. The navigation model is comprised
of a state graph, G, representing the top-level structure of
the navigation performed during the crawling, as well as
several pieces of data for each state of the state graph.
The state graph is a labelled directed graph in which a
state corresponds to an actual page that could be observed
by an end-user in a browser, and an edge represents an
observed transition between two states. Each edge is labelled
by the user action (typically, a click) and the element
that caused the transition. For each observed state s, and
corresponding page p, the model records (1) a screenshot
of p, as observed in the web browser, (2) the underlying
DOM representation for p, and (3) the co-ordinates of the
visual representation of each DOM element of p within the
browser. This crawling and model capture is performed, on
the target web application, for each of the two browsers
(Br1 and Br2), and the corresponding navigation models
(M1 and M2) are stored for subsequent analysis.

B. Phase 2: Model Comparison

This phase compares models M1 and M2, captured in the
previous phase, for equality and records the observed differ-
ences between them. These differences represent potential
manifestations of XBIs in the web application’s behavior
and are used in the final phase of the algorithm to identify
a set of XBIs. The comparison is performed in three steps,
representing analyses at three different levels of abstraction
of the model.

1) Trace-level Comparison: This step compares state
graphs G1 and G2 (of models M1 and M2) for equivalence.
To do so, it uses the graph isomorphism algorithm for
labelled directed graphs proposed in [6], which finds a one-
to-one mapping between both nodes and edges of G1 and
G2. This step is implemented by function traceEquivCheck()
of Algorithm 1 (line 3). The comparison produces two items:
T and ScreenMatchList. T is a list of those edges from G1 or
G2 that could not be matched to a corresponding edge in the
other state graph—edges that denote trace-level differences.

ScreenMatchList is a list of matched screen pairs (S1
i , S

2
i)

(from G1 and G2, respectively) that is used in the next step.
2) DOM Comparison of Matched Screen Pairs: This

step iterates through the pairs of matched screens in
ScreenMatchList (line 4) and, for each such pair (S1

i , S
2
i),

compares the DOMs of the two screens for equality.
This comparison is implemented by function matchDOMs()
(line 5) and produces DomMatchListi as its output.
DomMatchListi is a set of pairs of matched DOM nodes,
one for each pair of screens. Our DOM matching algorithm
largely follows the one proposed in WEBDIFF (see Algo-
rithm 1 in Reference [5] for details). The key difference
between the two algorithms is the computation of the match
index metric—a number between 0 and 1 that quantifies
the similarity between two DOM nodes. The higher the
match index, the higher the likelihood that the two DOM
elements represent the same element in the context of their
respective screens. Algorithm matchDOMs() uses this metric
when matching nodes in the two DOMs. Currently, we use
the following formula for computing the match index: Given
two DOM nodes a and b,
MatchIndex = 0.7×∆X + 0.2×∆A+ 0.1×∆P

where ∆X stands for XPath Distance, ∆A measures the
difference in attributes, and ∆P measures the difference in
dynamic properties queried from the DOM. The coefficients
for this formula were empirically established by us in
previous work. The variables are metrics which are defined
as follows:

∆X = 1− LevenshteinDistance(a.xpath, b.xpath)

max(length(a.xpath), length(b.xpath))

∆A =
countSimilar(a.attibutes, b.attributes)

count(a.attributes ∪ b.attributes)

∆P =
countSimilar(a.domdata, b.domdata)

count(a.domdata ∪ b.domdata)

In the formulas, (a, b) are the two DOM nodes to be
matched. XPath is the path of a particular DOM node in the
DOM tree from the root, and LevenshteinDistance [17]
is the edit distance between the XPaths of the two nodes un-
der consideration. Functions max(), length(), and count()
return the maximum of two numbers, the length of a string,
and the number of elements in a list, respectively. Properties
attributes and domdata are maps having (key, value)
pairs that represent the DOM node attributes and dynamic
DOM properties, respectively. Function countSimilar re-
turns the number of elements between two maps that have
equal (key, value) pairs, and operator ∪ performs a union
of two maps based on keys. Once the DOM nodes are
matched using the above formulas, a set of DOM-level
differences Di is computed for each screen pair (S1

i , S
2
i)

in ScreenMatchList.
3) Visual Comparison of Matched Screen-element Pairs:

This is the final and most important step in the model com-
parison. This step iterates over the pairs of matched DOM
elements in DomMatchListi (line 7) and, for each pair of
matched DOM nodes (n1j , n

2
j), compares their corresponding

screen elements visually. If the two nodes are found to be

different, they are added to the list of screen differences,
Vi, for screen pair (S1

i , S
2
i). The visual comparison is

implemented by function visualMatch() (line 8) and uses
a classifier C built through machine learning. Further details
of this classifier are presented in the following section. As
in the case of DOM-level differences, there is a set of visual
differences, Vi, computed for each pair of matched screens
(S1

i , S
2
i) in ScreenMatchList. Set V (line 13) is simply the

set of all the Vi computed for individual screen pairs.

C. Machine Learning for Visual Comparison
CROSSCHECK uses machine learning to build a classifier

that is used to decide whether two screen elements being
compared are different. For this work, we used a decision
tree classifier [10] because it is simple, yet effective in our
problem domain. We chose a set of five features (described
below) for the classifier. These features were carefully cho-
sen to encompass the typical manifestations of XBIs found
in the wild, based on our experience with cross-browser
testing during this and previous work [5], [6].

Let e1 and e2 be the screen elements being compared,
(x1, y1) denote the absolute screen co-ordinates of the top
left-hand corner of the bounding box of e1 (in pixels), w1, h1
denote the width and height of this bounding box (also in
pixels), and x2, y2, w2, and h2 denote the corresponding
entities for e2. Using this notation, the features we employed
are defined as follows:
• Size Difference Ratio (SDR): This feature is designed

to detect differences in size between the two elements
in question. The feature is computed as a ratio to nor-
malize and remove the effects of minor discrepancies in
size, arising from differences in white-space or padding
conventions between browsers. Such differences are
quite ubiquitous and typically not considered to be
XBIs. Specifically, if a1 = w1 ∗ h1 and a2 = w2 ∗ h2
denote the areas of the bounding boxes of e1 and e2,
respectively,

SDR =
|a1 − a2|
min(a1, a2)

where min() returns the minimum of its two argu-
ments.

• Displacement: This feature captures the euclidean dis-
tance between the positions of corresponding screen
elements:

Disp =

√
(x1 − x2)

2
+ (y1 − y2)

2

• Area: This feature is computed as area = min(a1, a2)
and is included to provide a “thresholding effect” for
the other features. In this way, CROSSCHECK can
ignore size or position differences in really small el-
ements, which are typically the result of noise in the
data capture rather than the manifestation of an actual
XBI.

• Leaf DOM Text Difference (LDTD): This is a
boolean-valued feature that detects differences in the
text content of screen elements. In our experience, when

such differences are caused by XBIs, they typically
pertain to leaf elements in the DOM trees. Thus, this
feature evaluates to true if and only if the elements
being compared are leaf elements of their respective
DOM trees, contain text, and the text in the two nodes
differ. Otherwise, this feature is assigned the value
false.

• χ2 Image Distance (CID): This feature is intended
to be the final arbiter of equality in comparing screen
elements. For this feature, the images of the respective
screen elements are compared by calculating (1) their
image histograms and (2) the χ2 distance between
them. The χ2 histogram distance has its origins in the
χ2 test statistic [18] and is computed as

χ2(H1, H2) =
∑
i

(H1(i)−H2(i))2

H1(i) +H2(i)

where H1 and H2 are the histograms of the images
of the screen elements, and the summation index i
indicates a bin of the histogram. This measure is
different from the EMD metric [19] that was used in
WEBDIFF; in our experience, the χ2 metric is much
faster to compute and much more accurate than EMD
for this specific problem, thus allowing us to detect a
larger number of XBIs.

Further details about the training phase of the classifier
are presented in Section VI.

D. Phase 3: Mapping Model Differences to XBIs

Algorithm 2: computeXBIs
/* Algorithm for computing XBIs from model

differences. */
Input : T : Trace-level differences

V: Visual Differences
ScreenMatchList: List of matched pairs of screens

Output: L: List of XBIs
1 begin
2 foreach (S1

i , S
2
i) ∈ ScreenMatchList do

// Cluster per matched screen pair
3 markV isualDiffs(S1

i , S
2
i ,Vi)

4 markTraceDiffs(S1
i , S

2
i , T)

5 C1i ← clusterMarkedNodes(S1
i)

6 C2i ← clusterMarkedNodes(S2
i)

7 Li ← mergeMappedClusters(C1i , C
2
i)

8 end
9 return L

10 end

We compute and report XBIs on a screen-by-screen basis,
using the clustering approach outlined in Algorithm 2. To
compute the set of XBIs, L, this algorithm uses the list of
trace-level differences, T , visual differences, V , and matched
screen-pairs, ScreenMatchList, computed by Algorithm 1. To
do so, it iterates through the pairs of matched screens S1

i , S
2
i

(line 2). The function markVisualDiffs() (line 3) marks those
DOM nodes in S1

i and S2
i that have any visual difference,

that is, that appear in the set of visual differences Vi for
this screen-pair. Function markTraceDiffs() (line 4) does
something similar, but for trace differences. Specifically, let
t ∈ T be a trace-level difference, which denotes a missing
edge originating from state S1

i to some other state S1
j . If

Table I
CONFUSION MATRIX

a b ← classified as
1959 0 a = false

9 169 b = true

this transition was created by a click on some DOM element
e in S1

i , then e will be marked by markTraceDiffs(). This
would be done for all trace-level differences (mismatched
state transitions) originating from screens S1

i or S2
i . Finally,

function clusterMarkedNodes() (lines 5,6) clusters all the
marked nodes of the given screen. Two nodes are clustered
together if and only if they have an ancestor-descendent
relationship in the DOM tree. This operation gives a set
of clusters C1i (respectively, C2i) for S1

i (respectively, S2
i).

Finally, mergeMappedClusters() (line 7) merges those clus-
ters from C1i and C2i that contain nodes that are DOM
counterparts. Each merged cluster denotes an XBI. A set
Li of XBIs is computed for each screen pair (S1

i , S
2
i). The

complete set of XBIs, L, is simply a collection of all Li.

VI. THE TOOL: CROSSCHECK

A. Training the classifier for Visual Comparison
As mentioned earlier, the visual comparison component of

our approach uses a machine learning based classifier. We
used the public domain WEKA [20] package for building
a classifier and applying it within CROSSCHECK for visual
comparison.

To train this classifier, we proceeded as follows. We chose
a set of 10 web pages from 10 different websites that we
knew had various cross-browser problems. Each of these
pages was loaded in the two browsers (FF 7.0 and IE 9,
in our case) and all relevant screen and DOM data was
captured for these pairs of pages. We ran these page pairs
through our DOM matching algorithm (Section V-B) to
generate a list of matched screen element pairs. Each of
these screen element pairs represents a single instance of the
visual comparison problem, a typical instance that would be
given to the classifier to evaluate in a real-time execution of
CROSSCHECK (on line 8 of Algorithm 1). We accumulated
these instances over the 10 test pages (each page yielded
several instances), which gave us 2, 137 instances to train
our classifier.

We then computed the features described in Section V
for each of these instances. We also manually labelled the
instances as either true, if they corresponded to an XBI, or
false otherwise. (We did this by viewing the instances in
the context of their respective web pages and performing
a side-by-side comparison.) As in any machine learning
process, this labeling implicitly codifies the kind of pattern
or classifier that will be eventually learnt. We therefore used
the following guidelines for the labeling:
• Only substantial changes in size, position, or overall

appearance (e.g., font, colors, visibility) were marked
as errors. Minor differences were ignored.

• All manifestations of a particular XBI were marked
as errors. For instance, if the XBI corresponded to
the displacement of a particular page element, such
as an HTML <TABLE> element, instances coming
from every DOM node in that <TABLE> would need

Figure 3. Overview of tool CROSSCHECK.

to be marked as errors, not just the top <TABLE>
element. This consistency between the labeling and the
feature is crucial for the machine learning algorithm
to build a proper classifier. Otherwise, the classifier
would be fragmented, non-intuitive, and ultimately of
poor quality.

The 2137 instances, of which 178 were labelled true,
constituted our training data set for a decision tree classifier
within WEKA. This gave us a tree of size 11 with 6
leaves. In order to assure ourselves the learnt classifier was
of sufficiently high quality, we performed stratified cross
validation [9] with 10 folds, on the classifier. The confusion
matrix [9] shown in Table I shows that the learnt classifier
was indeed of high quality.

B. Core Tool Implementation
We implemented the combined approach described in the

previous section in a tool called CROSSCHECK. Figure 3
shows an overview of CROSSCHECK and its principal com-
ponents. The tool consists of a crawler, CRAWLJAX, that
takes the URL of a deployed web application along with
an optional crawl specification and extracts the behavioral
model of the web application. The crawl specification con-
tains the instructions to explore a specific behavior of the
web application and the browser environments to consider
for testing.

The CRAWLJAX crawler is written in Java. We imple-
mented an observer module on top of CRAWLJAX to capture
whole-page screenshots and query dynamic DOM data for
each crawled web-page, as well as the overall state graph
of the crawled behavior. Specifically, we used the Java
Win32 API to obtain screenshots, and a custom JavaScript
program to query the DOM parameters. After the first phase,
CROSSCHECK produces a behavioral model of the web
application for each of the different browsers considered.

In the next phase, CROSSCHECK compares these models.
The trace comparator performs trace-level comparison as
described in Section V and generates a list of unmatched
states and transitions along with a set of matching screens
for further comparison. The DOM matcher matches DOM
nodes across matched screens and also reports unmatched
nodes. For each pair of matched DOM nodes, the feature
extractor computes the features—SDR, Displacement, Area,
LDTD and CID—for the corresponding screen elements,
as explained in Section V. These features are used by the

machine learnt classifier, comprising the visual differencer,
to decide whether this pair of screen elements are different.
If they are found to be different, they are added to the
set of visual, screen-level differences for this screen pair.
The report generator then clusters the trace-level and screen-
level differences from all of the screens into XBIs that are
presented to the user.

All the components of this phase were also implemented
in Java. For computing the CID, we used JavaCV (http:
//code.google.com/p/javacv), which is a java port of the
OpenCV (http://opencv.willowgarage.com) computer vision
toolkit. In the next section, we present an empirical eval-
uation of our approach that we performed using CROSS-
CHECK.

VII. EMPIRICAL EVALUATION

To assess the usefulness of CROSSCHECK to detect XBIs,
we conducted a set of experiments and compared the results
against the state of the art. Specifically, we investigated the
following research questions:

RQ1: Can CROSSCHECK identify different kinds of
CBDs in real-world web applications and correlate
them to identify XBIs?

RQ2: How effective is CROSSCHECK when compared to
CROSST and WEBDIFF?

We first present details of our experimental subjects and
procedure. Then, we use our results to address the research
questions listed above.

A. Subjects
For our evaluation, we use the seven web applications

listed in Table II. For each application, the table shows
its name, URL, type, number of states and transitions in
the crawled state flow graph for that application, and the
max, min, and average number of DOM nodes per screen
that were extracted from the web application and analyzed
by CROSSCHECK. (This latter metric serves as a measure
of the complexity of the pages being analyzed.) The first
application, Restaurant, is the web application we presented
in the motivating example; it was developed by us to demon-
strate different kinds of cross-browser issues. Organizer is
an open source personal organizer and task management
application [21]. The remaining subjects are real-world web
applications we selected using Yahoo!’s random URL ser-
vice (http://random.yahoo.com/bin/ryl). More precisely, we

http://code.google.com/p/javacv
http://code.google.com/p/javacv
http://opencv.willowgarage.com
http://random.yahoo.com/bin/ryl

Table II
INFORMATION ABOUT THE PROGRAMS USED IN THE EMPIRICAL EVALUATION.

Name URL Type States Transitions DOM Nodes (per screen)
max min average

Restaurant http://localhost/restaurant Information 3 8 785 846 821
Organizer http://localhost/organizer Productivity 13 99 10001 27482 13051
GrantaBooks http://grantabooks.com Publisher 9 8 15625 37800 25852
DesignTrust http://designtrust.org Business 10 20 7772 26437 18694
DivineLife http://sivanandaonline.org Spiritual 10 9 9082 140611 49886
SaiBaba http://shrisaibabasansthan.org Religious 13 20 524 42606 12162
Breakaway http://breakaway-adventures.com Sport 19 18 8191 45148 13059

chose them from a set of ten random web applications by
selecting those with visible XBIs in their entry page.

B. Experimental Setup
For conducting our experiments, we ran CROSSCHECK

on the subject web applications. The experiments were
performed on a 64-bit Windows 7 computer with 4GB
of RAM. We used two browsers for experimentation: the
latest stable versions of Mozilla Firefox (v7.0.1) and Internet
Explorer (v9.0.3). Although CROSSCHECK could be run on
more browsers, we believe that two browsers are sufficient
to evaluate our technique. The first two web applications
used for experiments were setup locally on an Apache web
server, while the remaining ones were crawled from their
live URLs.

C. Results
Table III(a) presents the results of our experiments. The

first column shows the name of the subject. The next six
columns show the cross-browser differences (CBD) reported
by CROSSCHECK, categorized by issue type: trace level
differences (Tr), positional shifts (Po), size differences (Sz),
visibility issues (Vs), text-level mismatches (Tx), and visual
appearance issues (Ap). The last two columns present the to-
tal numbers of CBDs identified and the number of clustered
XBIs corresponding to these differences. As the table shows,
CROSSCHECK identified CBDs of all types in the selected
web applications. In addition, it was able to cluster related
issues into the same XBI, as shown in the last column. For
instance, in the case of GrantaBooks, the tool reported 16
trace, 11 visibility and 1 visual appearance difference–these
28 CBDs were then clustered into 16 XBIs to be reported
to the user.

For comparing CROSSCHECK against CROSST and WEB-
DIFF, we exercised all three tools on the same web appli-
cations, manually confirmed the differences reported by the
tools, and compared the different tools’ results. Table III(b)
presents the results of this comparison. The table shows the
differences reported (and confirmed) for each of the tools in
columns Rep and Conf. The table also reports the confirmed
trace level (TL) and screen level (SL) differences. As shown
in the table, CROSSCHECK reported 314 errors with 64%
false positives (FPs), as compared against 49 (98% FPs)
for CROSST and 119 (79% FPs) for WEBDIFF. Moreover,
CROSSCHECK outperformed CROSST and WEBDIFF in
their respective domains: (TL + SL) > CROSSTconf and
SL > WEBDIFFconf , in most cases. The improvement over
CROSST can be attributed to a better screen level matching.

whereas the improvement over WEBDIFF is due to the use
of the machine learnt classifier for visual comparison.

VIII. DISCUSSION

As shown in the previous section, CROSSCHECK was able
to find different types of cross browser differences in the web
applications we considered and to cluster them into a smaller
number of XBIs to be reported to developers. This result
addresses RQ1, which relates to the effectiveness of the tech-
nique. CROSSCHECK was also able to outperform the state-
of-the-art tools in terms of efficacy, thereby addressing RQ2.
Next, we discuss the main limitations of CROSSCHECK.

Limitations of the Crawler: Our current implementa-
tion uses the state-of-the-art crawler CRAWLJAX to explore
a web application state space, and CRAWLJAX has some
limitations. Due to its black-box view of the application,
CRAWLJAX needs a specification to guide its exploration
of the application’s behavior and decide which part of it to
ignore. This requires some manual effort and, in some cases,
can limit the behavior coverage that can be achieved through
the crawler. Also, the crawler currently does not support all
kinds of user interactions with all kinds of widgets on all
browsers. For example, the current version of CRAWLJAX
does not support clicks on tags <area> in Internet Explorer.
It is important to note that our core technique for XBI
detection is orthogonal to the specific technique used for web
application crawling. Therefore, CROSSCHECK can benefit
from any improvement to the crawling tool. For example, we
could use a suitable white box technique to automatically
extract the crawl specification through program analysis
(e.g., [22]).

Inconsistency in Browser Support: Our core technique
relies on the DOM information obtained from the browser
to detect XBIs. Sometimes, the DOM node’s information
provided by the browser is inaccurate, which can lead to
false positives. For instance, an inaccuracy in the geometric
information of a node would result in the computation of
inaccurate feature values for the visual comparison, poten-
tially resulting in identical screen elements being flagged
as different. This issue can be mitigated by performing
some noise removal on the extracted geometries and also by
evolving the feature set to make the approach more resilient
to such noisy sources. We are currently working along this
direction.

Limitations of Visual Analysis: Computer vision algo-
rithms are effective for comparing the underlying binary data
of images, but they are not as good at accurately mimicking
a human perception of visual differences. We found that

Table III
CROSSCHECK EMPIRICAL RESULTS

NAME Tr Po Sz Vs Tx Ap CBD XBI
Restaurant 4 0 2 0 2 3 11 9
Organizer 14 0 42 5 0 1 62 18
GrantaBooks 16 0 0 11 0 1 28 16
DesignTrust 4 2 39 2 0 146 189 130
DivineLife 7 0 0 3 1 70 81 73
SaiBaba 2 5 31 7 3 55 103 89
Breakaway 0 13 132 0 0 246 391 268

(a) CROSSCHECK detailed results on subjects

NAME
CROSSCHECK CROSST WEBDIFF

Rep. Conf. TL SL Rep. Conf. Rep. Conf.
Restaurant 11 11 4 7 11 6 11 5
Organizer 62 50 14 36 202 14 28 8
GrantaBooks 28 27 16 11 348 16 10 9
DesignTrust 189 27 4 23 68 0 98 21
DivineLife 81 13 7 6 1741 10 67 8
SaiBaba 103 36 2 34 188 3 42 5
Breakaway 391 150 0 150 306 0 291 63
TOTAL 865 314 47 267 2864 49 547 119

(b) CROSSCHECK results compared to CROSST and WEBDIFF

this limitation can also be a source of false positives—small
differences that would be ignored by a human eye may
be identified by the vision algorithm. In future work, we
will investigate how to improve visual analysis algorithms
to eliminate, or at least mitigate, this issue.

IX. CONCLUSION

Cross-browser Incompatibilities are common and repre-
sent a serious problem for web application developers. In
this paper, we presented CROSSCHECK—a technique and
tool for detecting XBIs in web applications. We described
how CROSSCHECK combines two recent complementary ap-
proaches developed by the authors to perform this task more
effectively and completely. CROSSCHECK not only reports
both functional and visual differences, but also correlates and
clusters different (but related) issues to present fewer XBIs
to developers. Our experiments show that CROSSCHECK can
detect XBIs both effectively and efficiently, and that it can
outperform current state-of-the-art techniques.

In future work, we will improve CROSSCHECK to address
the limitations discussed in Section VIII. Another logical
next step for this work is to investigate techniques to assist
the developer in diagnosing and fixing the XBIs detected
by our technique. As a first step in this direction, we plan
to perform a user study that can let us better understand
developer needs for this task and build automated techniques
around those.

ACKNOWLEDGMENT

The authors would like to thank Ali Mesbah for his
initial work behind CRAWLJAX and CROSST which were
instrumental for this work. This work was partially supported
by NSF grants CNS-1117167, CCF-0964647, and CCF-
0725202 to Georgia Tech.

REFERENCES

[1] J. J. Garrett, “Ajax: A new approach to web ap-
plications.” http://www.adaptivepath.com/publications/essays/
archives/000385.php, February 2005.

[2] Wikipedia, “List of web browsers,” http://en.wikipedia.org/
wiki/List of web browsers.

[3] Adobe, “Browser lab,” https://browserlab.adobe.com/, May
2010.

[4] Microsoft, “Expression web,” http://www.microsoft.com/
expression/products/Web Overview.aspx, May 2010.

[5] S. Roy Choudhary, H. Versee, and A. Orso, “WebDiff: Au-
tomated identification of cross-browser issues in web appli-
cations,” in Proceeding of the 2010 IEEE International Con-
ference on Software Maintenance (ICSM). IEEE, September
2010.

[6] A. Mesbah and M. R. Prasad, “Automated cross-browser
compatibility testing,” in Proceeding of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. New
York, NY, USA: ACM, 2011, pp. 561–570.

[7] R. T. Fielding and R. N. Taylor, “Principled design of the
modern web architecture,” ACM Trans. Internet Technol.,
vol. 2, pp. 115–150, May 2002.

[8] A. Grosskurth and M. W. Godfrey, “A reference architecture
for web browsers,” 21st IEEE International Conference on
Software Maintenance, pp. 661–664, September 2005.

[9] T. M. Mitchell, Machine learning, ser. McGraw Hill series in
computer science. McGraw-Hill, 1997.

[10] J. Quinlan, C4.5: programs for machine learning, ser.
Morgan Kaufmann series in machine learning. Morgan
Kaufmann Publishers, 1993. [Online]. Available: http:
//books.google.com/books?id=HExncpjbYroC

[11] C. Eaton and A. M. Memon, “An empirical approach to
evaluating web application compliance across diverse client
platform configurations,” Int. J. Web Eng. Technol., vol. 3,
no. 3, pp. 227–253, 2007.

[12] M. Tamm, “Fighting layout bugs,” http://code.google.com/p/
fighting-layout-bugs/, October 2009.

[13] “Acid Tests - The Web Standards Project,” http://www.
acidtests.org.

[14] “test262 - ECMAScript,” http://test262.ecmascript.org/.
[15] A. Mesbah, E. Bozdag, and A. van Deursen, “Crawling Ajax

by inferring user interface state changes,” in Proc. 8th Int.
Conference on Web Engineering (ICWE’08). IEEE Computer
Society, 2008, pp. 122–134.

[16] A. Mesbah and A. van Deursen, “Invariant-based automatic
testing of Ajax user interfaces,” in Proc. 31st Int. Confer-
ence on Software Engineering (ICSE’09). IEEE Computer
Society, 2009, pp. 210–220.

[17] V. Levenshtein, “Binary codes capable of correcting spurious
insertions and deletions of ones,” Problems of Information
Transmission, vol. 1, pp. 8–17, 1965.

[18] K. Pearson, “X. on the criterion that a given system of
deviations from the probable in the case of a correlated system
of variables is such that it can be reasonably supposed to
have arisen from random sampling,” Philosophical Magazine
Series 5, vol. 50, no. 302, pp. 157–175, 1900.

[19] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s
distance as a metric for image retrieval,” International Journal
of Computer Vision, vol. 40, pp. 99–121, 2000.

[20] “Weka 3: Data Mining Software in Java,” http://www.cs.
waikato.ac.nz/ml/weka/.

[21] F. Zammetti, Practical Ajax Projects with Java Technology,
ser. Apress Series. Apress, 2006. [Online]. Available:
http://books.google.com/books?id=UPTjGFA5NugC

[22] W. Halfond and A. Orso, “Improving test case generation
for web applications using automated interface discovery,”
in ESEC-FSE ’07: Proceedings of the 6th joint meeting
of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software
engineering. ACM, 2007, pp. 145–154.

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://en.wikipedia.org/wiki/List_of_web_browsers
http://en.wikipedia.org/wiki/List_of_web_browsers
https://browserlab.adobe.com/
http://www.microsoft.com/expression/products/Web_Overview.aspx
http://www.microsoft.com/expression/products/Web_Overview.aspx
http://books.google.com/books?id=HExncpjbYroC
http://books.google.com/books?id=HExncpjbYroC
http://code.google.com/p/fighting-layout-bugs/
http://code.google.com/p/fighting-layout-bugs/
http://www.acidtests.org
http://www.acidtests.org
http://test262.ecmascript.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://books.google.com/books?id=UPTjGFA5NugC

