
X-PERT: Accurate Identification of
Cross-Browser Issues in Web Applications

Shauvik Roy Choudhary
Georgia Institute of Technology, USA

shauvik@cc.gatech.edu

Mukul R. Prasad
Fujitsu Laboratories of America, USA

mukul@us.fujitsu.com

Alessandro Orso
Georgia Institute of Technology, USA

orso@cc.gatech.edu

Abstract—Due to the increasing popularity of web applications,
and the number of browsers and platforms on which such
applications can be executed, cross-browser incompatibilities
(XBIs) are becoming a serious concern for organizations that
develop web-based software. Most of the techniques for XBI
detection developed to date are either manual, and thus costly
and error-prone, or partial and imprecise, and thus prone to
generating both false positives and false negatives. To address
these limitations of existing techniques, we developed X-PERT, a
new automated, precise, and comprehensive approach for XBI
detection. X-PERT combines several new and existing differencing
techniques and is based on our findings from an extensive study
of XBIs in real-world web applications. The key strength of our
approach is that it handles each aspects of a web application using
the differencing technique that is best suited to accurately detect
XBIs related to that aspect. Our empirical evaluation shows that
X-PERT is effective in detecting real-world XBIs, improves on the
state of the art, and can provide useful support to developers for
the diagnosis and (eventually) elimination of XBIs.

I. INTRODUCTION

Cross-browser incompatibilities (XBIs) are discrepancies
between a web application’s appearance, behavior, or both,
when the application is run on two different environments.
An environment consists of a web browser together with the
host operating system. Due to the increasing popularity of web
applications, and the number of browsers and platforms on
which such applications can be executed, XBIs are a serious
concern for organizations that develop web-based software.
For example, a search on the popular developer discussion
forum stackoverflow.com, for posts tagged with “cross-browser”
returned over 2500 posts over the past four years! Further,
nearly 2000 of these have been active over the past year [1].

Because of the relevance of XBIs, a number of tools
and techniques have been proposed to address them. In fact
there are over 30 tools and services for cross-browser testing
currently in the market [2]–[4]. Most of these tools are mainly
manual and either provide tips and tricks for developers on
how to avoid XBIs or render the same web application in
multiple browsers at the same time and allow a human to check
such renditions. Being human intensive, these techniques are
less than ideal; they are costly and, especially, error-prone.

Researchers have therefore started to propose automated
techniques for XBI detection (e.g., [2], [5]–[8]). At a high
level, these automated techniques work as follows. First, they
render (and possibly crawl) the given web application in
two different web browsers of interest and extract a possibly

large set of features that characterize the application. This set
may include behavioral features, such as finite state machine
models that represent how the web application responds to
various stimuli (e.g., clicks, menu selections, text inputs). The
set of features may also include visual characteristics of certain
widgets or sets of widgets on a page, such as their size, their
position, or properties of their visual rendition (i.e., appear-
ance). Second, the techniques compare the features collected
across the two browsers and, if they differ, decide whether the
difference is attributable to an XBI. Intuitively, these features
are used as proxies for the human user’s perception of the
page and its behavior, so differences in features between
two browsers are indications of possible XBIs. Finally, the
techniques produce reports for the web-application developers,
who can use the reports to understand the XBIs, identify their
causes, and eliminate such causes.

The two most fundamental characteristics of XBI detection
techniques are therefore (1) the choice of which features to
collect and (2) the criteria used to decide whether a difference
between two features is indeed the symptom of an XBI (i.e.,
it can be perceived by a user as a difference in the web
application’s behavior or appearance). In existing techniques
these choices are based primarily on intuition and experience
and not on a systematic analysis of real-world XBIs.

Although such an approach is fine for an initial investiga-
tion, and in fact provided encouraging results in our initial
evaluations (e.g., [2], [5]), it must be improved for a more
mature solution to the XBI detection problem. Case in point,
the evaluation of our earlier approaches on a more extensive
set of web applications generated a considerable number of
false positives, false negatives, and duplicate reports for the
same underlying errors, as we further discuss in Section VIII.

This paper presents X-PERT, a new comprehensive tech-
nique and tool for detection of XBIs that addresses the
limitation of existing approaches. First, X-PERTś approach is
derived from an extensive and systematic study of real-world
XBIs in a large number of web applications from a variety of
different domains. Besides showing that a large percentage of
web applications indeed suffer from XBIs (over 20%), thus
providing further evidence of the relevance of the problem,
the study also allowed us to identify and categorize the most
prominent feature differences that a human user would most
likely perceive as actual XBIs.

stackoverflow.com

Second, X-PERT is designed to be a comprehensive and ac-
curate framework for detecting XBIs. It integrates differencing
techniques proposed in previous work with a novel technique
for detecting layout errors, by far the most common class of
XBIs observed in our case study (over 50% of web-sites with
XBIs contained layout XBIs). This allows X-PERT to detect the
entire gamut of XBI errors and do so with very high precision.

Finally, by targeting the most appropriate differencing tech-
nique to the right class of XBIs, X-PERT usually reports only
one XBI per actual error, unlike other techniques (e.g., [5],
[6]), which typically produce several duplicate error reports.
For example, the movement of a single element on a page
can have a domino effect on the positions of all elements
below it. CROSSCHECK [6] might report all such elements as
different XBIs, while our current approach would identify only
the offending element. This improvement greatly simplifies the
task of understanding XBIs for the developer.

This paper also presents a thorough empirical evaluation of
X-PERT on a large set of real-world web applications. The
results of our evaluation are promising: X-PERT was able to
identify XBIs in the subjects with a fairly high precision (76%)
and recall (95%) and with negligible duplication in the XBI
reports. In fact, when compared with a state-of-the-art detector,
X-PERT outperformed it in terms of precision, recall, and one-
to-one correspondence between identified and actual XBIs.

The main contributions of this work are:
• A systematic study of a large number of real-world

web applications that helps develop a deeper, realistic
understanding of real-world XBIs and how to detect them.

• A comprehensive approach for XBI detection, called X-
PERT, that integrates existing techniques with a novel
approach to detecting layout XBIs in a single, unifying
framework.

• An implementation of our X-PERT approach and a thor-
ough empirical study whose results show that X-PERT is
effective in detecting real-world XBIs, improves on the
state of the art, and can support developers in understand-
ing and (eventually) eliminating the causes of XBIs.

• A public release of our experimental infrastructure and ar-
tifacts (see http://www.cc.gatech.edu/∼orso/software/x-pert/),
which will allow other researchers and practitioners to
benefit from them and build on this work.

II. MOTIVATING EXAMPLE

In this section, we introduce a simple web application that
we use as a motivating example to illustrate different aspects
of our approach. The application, referred to as Conference
hereafter, is the web site for a generic conference. (In this
paper, unless otherwise stated, we use the terms “web appli-
cation” and “web site” interchangeably.)

Figure 1 provides an abstract view of this web site, as
rendered in the Mozilla Firefox browser. The site consists of
three interlinked dynamically generated pages that show the
conference venue details, the key dates of the main conference
activities, and the list of accepted papers. The buttons labeled
HOME, DATES, and PAPERS can be used for navigating

Fig. 1. State Graph for web application Conference in Mozilla Firefox.

(a) Mozilla Firefox (b) Internet Explorer

Fig. 2. One web page of Conference rendered in two browsers.

between different pages. Alternatively, the hyperlinks at the
bottom of each page can also be used for navigation. The
figure shows these inter-page transitions using two different
kinds of edges, where dashed edges correspond to a button
push, and solid edges correspond to a click on a link.

When rendered in Mozilla Firefox (FF) and Internet Ex-
plorer (IE), our example application manifests one behavioral
and three visual XBIs (the latter shown in Figure 2). We
discuss these XBIs and their causes individually.

XBI #1: Buttons HOME, DATES, and PAPERS do not
produce any response when clicked in IE (i.e., the dashed
transitions in Figure 1 do not occur in IE), which prevents the
users from accessing part of the application’s functionality.
The cause of this XBI is the following HTML code (shown
for the DATES button only, as the other ones are analogous):

The application implements the buttons with tags and
associates the JavaScript event handler navigate to button-
click events using the onclick attribute of such tags. Because
IE does not support the onclick attribute for the tag,
the buttons are unresponsive in IE.

http://www.cc.gatech.edu/~orso/software/x-pert/

XBI #2: The buttons in the pages are arranged horizontally
(left to right) in FF, but vertically in IE. The reason for this
layout related XBI is that the application sets the total width of
the button bar to 225 pixels. Due to differences in the default
border and padding around button images in FF and IE, the
second button does not fit in this width in IE and goes to the
next line.

XBI #3: The number of accepted papers appears as
‘undefined’ in IE. This issue is caused by the following
JavaScript code:

var count = $("paperlist").childElementCount
+ " papers accepted!";

$("papercount").innerHTML = count;

In the code, the list of papers is implemented as a list element
() with id ‘‘paperlist’’. The code uses property
childElementCount to query the size of this list and adds
it to the string that prints the number of papers. (We use
$("paperlist") as a shorthand for the complete expression,
which is document.getElementById("paperlist").)
Because the childElementCount property is not supported
in IE, the query returns ‘undefined’, which results in the
observed error.

XBI #4: The page title has a (red) shadow in FF and no
shadow in IE. This last XBI is due to the following CSS
property of the page title, which is an <h1> element:

h1{text-shadow: 2px 2px 2px red;}

Similar to the previous XBI, because the text-shadow prop-
erty is not supported in IE, the shadow is absent in the IE
rendering of the application pages.

III. RELATED WORK

Previous work on cross-browser compatibility testing can
be divided into the following four generations of techniques.

A. Generation 0: Developer Tool Support
A common resource used by web developers are browser-

compatibility tables maintained by reference websites such
as http://quirksmode.org and http://caniuse.com. Using these ta-
bles, a developer can manually lookup features used by
their applications to know if the feature is supported by a
certain set of browsers. However, these tables are generated
manually and only have feature information for a limited set
of browsers. Some web development tools such as Adobe
Dreamweaver (http://www.adobe.com/products/dreamweaver.html)
provide basic static analysis-based early detection of XBIs
during development. However, these tools only check for
certain types of XBIs related to specific DOM API calls or
CSS features not supported by certain browsers. Modern XBIs
often arise through a combination of browser, DOM, and
JavaScript features, which is outside the scope of such tools.

B. Generation I: Tests on a Single Browser
Eaton and Memon [9] propose a technique to identify

potentially problematic HTML tags on a page based on a given
manual classification of good and faulty pages. Tamm [10]
presents a tool to find layout related issues on a page, using

visual and DOM information, that requires the user to manu-
ally alter the page (i.e., add and remove elements) while taking
screenshots. Both these techniques are human intensive and
not well suited for modern web applications with a potentially
large number of dynamically generated pages. Moreover, they
test a web application within a single web browser, so they
are not, strictly speaking, XBI-detection techniques.

C. Generation II: Multi-Platform Behavior & Test Emulation

This class of tools allows developers to emulate the be-
havior of their web application under different client plat-
forms. Tools such as BrowserShots (http://browsershots.org)
and Microsoft Expression Web SuperPreview (http://microsoft.
com) provide previews of single pages, while tools such
as CrossBrowserTesting.com and Adobe BrowserLab (https:
//browserlab.adobe.com/) let the user browse the complete web
application in different emulated environments. While these
tools do provide some emulation and visualization infrastruc-
ture, the core tasks of identifying the behaviors to explore and
comparing them to extract XBI errors are still left to the user.

D. Generation III: Crawl-and-Compare Approaches

This class of techniques represents the most recent and most
automated solutions for cross-browser testing. These tech-
niques generally work in two steps. First, the behavior capture
step automatically crawls and captures the behavior of the web
application in two or more browsers; such captured behavior
may include screen images and/or layout data of individual
web pages, as well as models of user-actions and inter-page
navigation. Then, the behavior comparison step automatically
compares the captured behavior to identify XBIs.

WEBDIFF [5] uses a combination of DOM and visual
comparison, based on computer-vision techniques, to detect
XBIs on individual web pages. CROSST [2], conversely, uses
automatic crawling and navigation comparison to focus on
differences in the dynamic behavior caused by, for example,
unresponsive widgets in a certain browser. CROSSCHECK [6]
combines these two approaches and tries to achieve better
precision through machine-learning based error detection.
However, it still suffers from a high number of false positives
and duplicate error reports. WebMate [7], a recent addition to
this class of techniques, focuses mainly on improving the cov-
erage and automation of the automated crawling, and its XBI
detection features are still under development. QualityBots
(http://code.google.com/p/qualitybots/) is an open source project
that checks the appearance of a web application in different
versions of the Google Chrome browser. The technique uses
pixel-level image comparison and is not yet available for use
with other families of web browsers. Browsera (http://www.
browsera.com/), MogoTest (http://mogotest.com/), and Browser-
bite (http://app.browserbite.com/) are the very first industrial
offerings in this category. They use a combination of limited
automated crawling and layout comparison, albeit based on a
set of hard-coded heuristics. In our (limited) experience with
these tools, we found that these heuristics are not effective
for arbitrary web sites. However, an objective evaluation of

http://quirksmode.org
http://caniuse.com
http://www.adobe.com/products/dreamweaver.html
http://browsershots.org
http://microsoft.com
http://microsoft.com
https://browserlab.adobe.com/
https://browserlab.adobe.com/
http://code.google.com/p/qualitybots/
http://www.browsera.com/
http://www.browsera.com/
http://mogotest.com/
http://app.browserbite.com/

the quality of these tools cannot be made at this time, since a
description of their underlying technology is not available.

IV. STUDY OF REAL-WORLD XBIS

As we discussed in the Introduction, the starting point of
this work was a study of a large number of real-world XBIs.
The goal was to provide a deeper understanding that could
guide the re-targeting of existing XBI detection techniques
and possibly the development of new ones.

In order to have an adequate sample of web applications for
our study, we set the number of web sites to be studied to 100.
Also, to avoid bias in the selection of the web sites, we selected
them randomly using Yahoo!’s random URL service, available
at http://random.yahoo.com/bin/ryl. For each web site selected,
we followed the following process. First, we opened the web
site using two different browsers: Mozilla Firefox and Internet
Explorer. Second, one of the authors performed a manual
examination of the site on the two browsers by studying both
the visual rendering of the pages and their behavior when
subjected to various stimuli. To limit the time requirements
for the study, we selected a time limit of five minutes per site
for the examination. This resulted in a total of over eight hours
of manual examination, spread across several days. Finally, we
analyzed the XBIs identified to categorize them based on their
characteristics. We now discuss the finding of the study.

One striking result of our study is that the problem of XBI
detection is quite relevant: among the 100 web sites examined,
23 manifested XBIs. This result is even more surprising if
we consider that the examination involved only two browsers
and a fairly limited observation time. More issues may appear
if additional browsers and platforms, or a more extensive
observation, were to be considered.

The study of the characteristics of the identified XBIs
clearly showed three main types of XBIs: structure, content,
and behavior. A finer grained analysis further allowed us
to identify two subcategories for content XBIs: text and
appearance. We describe these categories in detail below.
• Structure XBIs: These XBIs manifest themselves as errors

in the structure, or layout, of individual web pages. For
example, a structure XBI may consist of differences
in the way some components of a page (e.g., widgets)
are arranged on that page. XBI #2 in the example of
Section II is an instance of such an XBI.

• Content XBIs: These XBIs involve differences in the
content of individual components of the web page. A
typical example of this type of XBIs would be a textual
element that either contains different text when rendered
in two different browsers or is displayed with a different
style in the two cases. We further classify these XBIs as
text-content or visual-content XBIs. The former category
involves differences in the text value of an element,
whereas the latter category refers to differences in the
visual aspects of a single element (e.g., differences in the
content of an image or in the style of some text). XBIs
#3 and #4 (Section II) are instances of text-content and
visual-content XBIs respectively.

TABLE I
CATEGORIZATION OF THE REAL-WORLD XBIS WE FOUND IN OUR STUDY.

Structure 13

Content Text 5
Visual 7

Behavior 2

• Behavior XBIs: These type of XBIs involve differences
in the behavior of individual functional components of a
page. An example of behavioral XBI would be a button
that performs some action within one browser and a
different action, or no action at all, in another browser.
XBI #1 from Section II is a behavior XBI.

Table I shows, for each category of XBIs that we identified,
the number of web sites in the study sample that exhibit that
type of issue. Note that the sum of the values in the last column
is higher than the total number of web sites with XBIs (23)
because a single web site can contain multiple types of XBIs.

The above statistics, as well as a deeper analysis of each of
the observed XBIs, provided the following key insights:

1) The three categories of XBIs are independent, that is,
there is typically little or no correlation between the
occurrence of XBIs in one category and another.

2) The three categories of XBIs are qualitatively quite
distinct. Intuitively, while behavior of a widget refers to
how it respond to a user action, structure denotes where
and how it is arranged on the page, and content refers
to its appearance.

3) Structure XBIs are by far the most common category,
occurring in 57% (13/23) of the subjects that had XBIs.
Further, we observed that we tended to recognize a struc-
ture XBI through a difference in the relative position
of an element with respect to its immediate neighbors,
rather than a difference of its absolute size or position.
(We hypothesize that most users will do the same.)

The first two insights suggest that the three categories
of XBIs could be independently detected, and techniques
specialized to each category should be used. This insight also
partly explains why use of image-comparison techniques for
detecting structure and content XBIs had a high false positive
rate in our previous work [5]. The third insight motivated us to
develop a novel approach for detecting structure XBIs based
on the concept of relative-layout comparison. This technique
is presented in Section VI. It also explained why using the
absolute size or position of elements to detect structure XBIs
in our previous work [6] resulted in many false positives.

V. A COMPREHENSIVE APPROACH TO XBI DETECTION

Our overall framework for XBI detection falls into the
broad category of “crawl-and-compare” approaches described
in Section III-D and draws heavily on the findings of our case
study in Section IV. The behavior capture step is fairly similar
to the one used in [6]. However, the behavior comparison step,
unlike [6] or any other previous work, is organized as a set of
four independent and orthogonal algorithms, each targeted to
detect a specific category of XBIs: behavior, structure, visual-
content, and text-content.

http://random.yahoo.com/bin/ryl

Algorithm 1: X-PERT: Overall algorithm
Input : url: URL of target web application

Br1, Br2: Two browsers
Output: X : List of XBIs

1 begin
2 X ← ∅
3 (M1,M2)← genCrawlModel(url, Br1, Br2)

// Compare State Graphs
4 (B,PageMatchList)← diffStateGraphs(M1,M2)
5 addErrors(B,X)
6 foreach (S1

i , S
2
i) ∈ PageMatchList do

// Compare matched web-page pair
7 DomMatchListi ← matchDOMs(S1

i , S
2
i)

8 LRi ← diffRelativeLayouts(S1
i , S

2
i ,DomMatchListi)

9 CTi ← diffTextContent(S1
i , S

2
i ,DomMatchListi)

10 CVi ← diffVisualContent(S1
i , S

2
i ,DomMatchListi)

11 addErrors(LRi , CVi , CTi ,X);
12 end
13 return X
14 end

Further, the algorithms for behavior, visual-content, and
text-content XBI detection are adapted from [6] but orches-
trated differently and more effectively in the current work.
The algorithm for detecting structure XBIs, which usually
constitute the bulk of XBIs (see Table I), is completely novel
and a substantial improvement over previous work.

A. Terminology
Modern web applications are comprised of several static or

dynamically generated web pages. Given a web page W and a
web browser Br, W (Br) is used to denote W as rendered in
Br. Each web page is comprised of a number of web elements
(e.g., buttons, text elements) or containers of such elements
(e.g., tables). We use e to refer to an element of a web page.
Further, each web page has a DOM (Document Object Model)
representation, a layout, and a visual representation. We use
D to refer to the DOM of a web page (or a portion thereof).
The layout of a web page represents its visual structure. We
model the layout as a set of potentially overlapping rectangles
in a two dimensional plane and denote it as L. Each rectangle
represents an element of the page and is characterized by the
coordinates (x1, y1) of its top-left corner and (x2, y2) of its
bottom right corner. Thus, L(e) = ((x1, y1), (x2, y2)) denotes
the layout of element e. The visual representation of a web
page is simply its two-dimensional image, as rendered within
the web browser. Accordingly, the visual representation of an
element is the image of the rectangle comprising the element.

B. Framework for XBI Detection
Algorithm 1 presents our overall approach for XBI detec-

tion. Its input is the URL of the opening page of the target
web application, url, and the two browsers to be considered,
Br1 and Br2. Its output is a list X of XBIs. The salient steps
of this approach are explained in the following sections.

Crawling and Model capture: The first step is to crawl
the web application, in an identical fashion, in each of the
two browsers Br1 and Br2, and record the observed be-
havior as navigation models M1 and M2, respectively. The
navigation model is comprised of a state graph representing
the top-level structure of the navigation performed during the

crawling, as well as the image, DOM, and layout information
of each observed page. This is implemented by function
genCrawlModel() at line 3 and is similar to the model capture
step in CROSSCHECK [6].

Behavior XBI Detection: The next step is to check
the state graphs of navigation models M1 and M2 for
equivalence. This is done using the algorithm for checking
isomorphism of labelled transition graphs proposed in [2].
Function diffStateGraphs() (line 4) performs this operation.
This comparison produces a set of differences, B, and a
list PageMatchList of corresponding web-page pairs S1

i , S
2
i

between M1 and M2. The differences in B are attributable
to missing and/or mismatched inter-page transitions. Since
these transitions characterize the dynamic behavior of the web
application, B represents the behavior XBIs as detected by Al-
gorithm 1. The algorithm then iterates over the list of matched
web-page pairs in PageMatchList and compares them in
various ways to detect other kinds of XBIs (lines 6− 13).

DOM Matching: To compare two matched pages S1
i and

S2
i , the algorithm computes a list DomMatchList i of cor-

responding DOM element pairs in S1
i and S2

i . This is imple-
mented by function matchDOMs() (line 7) and done based on
a match index metric for DOM element correspondence. This
metric was first proposed in [5] and further developed in [6].
The match index uses a weighted combination of (1) the XPath
(i.e., path in the DOM—see http://www.w3.org/TR/xpath/), (2)
DOM attributes, and (3) a hash of an element’s descendants
to compute a number between 0 and 1 that quantifies the
similarity between two DOM elements. (See [6] for further
details.) The computed DomMatchList i is used by several of
the subsequent steps.

Structure XBI Detection: We introduce the notion of
relative-layout comparison as the mechanism for detecting
structure XBIs, which is one of the key contributions of
this paper. Function diffRelativeLayouts() (line 8 of Algo-
rithm 1) compares pages S1

i and S2
i and extracts the set of

relative-layout differences LR
i that represent structure XBIs

(also called relative-layout XBIs). The technique for detecting
relative-layout XBIs is described in Section VI.

Text-content XBI Detection: These XBIs capture textual
differences in page elements that contain text. To detect them,
the text-value of an element is extracted from its DOM
representation and compared with that of its corresponding
element from DomMatchList i. This operation is performed
by diffTextContent() (line 9) and is similar to the method
for extracting the LDTD feature for machine learning in [6].

Visual-content XBI Detection: Visual-content XBIs repre-
sent differences in the visual appearance of individual page el-
ements, such as differences in the styling of text or background
of an element. To detect such errors, our approach takes the
screen images of two corresponding elements and compares
their color histograms using the χ2 distance, similar to what
we did in CROSSCHECK [6]. Unlike CROSSCHECK however,
which compared all DOM elements and generated many false
positives, our new approach applies visual comparison only
to leaf DOM elements, where it is most effective at detecting

http://www.w3.org/TR/xpath/

visual-content XBIs. Function diffVisualContent() (line 10)
implements this operation. The XBIs extracted in this step and
in the previous one are then added to the XBI list X (line 11).

VI. DETECTING RELATIVE-LAYOUT XBIS

Given a web page W and two different browsers Br1 and
Br2, relative-layout XBIs represent discrepancies between the
relative arrangements of elements on the layouts of W (Br1)
and W (Br2). To accurately detect these issues, we propose a
formalism for modeling the relevant aspects of a page layout,
called an Alignment Graph. To detect relative-layout XBIs,
our approach performs the following two steps: (1) extract
alignment graphs A1 and A2 from the layouts of W (Br1)
and W (Br2), respectively; and (2) compare A1 and A2 for
equivalence and extract differences as relative-layout XBIs.

In the following sections, we formally define the alignment
graph and the algorithms for extraction and equivalence check-
ing of alignment graphs.

A. The Alignment Graph
The alignment graph is used to represent two kinds of

relationships between the elements (rectangles) of the layout of
a web page, namely, parent-child relationships and sibling. We
introduce the relevant definitions for these two relationships.

Definition 1 (Contains Relation): Given a set of elements Ds

from a web page, a contains relation, ≺: Ds → Ds, is defined
between elements of Ds as follows. Given two elements
e1, e2 ∈ Ds with layout views L(e1) = ((x11, y

1
1), (x

1
2, y

1
2))

and L(e2) = ((x21, y
2
1), (x

2
2, y

2
2)) and XPaths X1 and X2,

e1 ≺ e2 if and only if
• x11 ≤ x21 ∧ y11 ≤ y21 ∧ x12 ≥ x22 ∧ y12 ≥ y22 and
• if L(e1) = L(e2) then X1 is a prefix of X2

Thus, a contains relation exists between e1 and e2 if either
(1) rectangle L(e2) is strictly contained within rectangle L(e1)
of e1 or (2) e1 is an ancestor of e2 in the DOM, in the case
where L(e1) and L(e2) are identical.

Definition 2 (Parent node): Given a set of elements Ds from
a web page, and two elements e1, e2 ∈ Ds, e1 is a parent of
e2 if and only if e1 ≺ e2, and there does not exist an element
e3 ∈ Ds such that e1 ≺ e3 ∧ e3 ≺ e2.

Thus, the parent of an element e is basically the “small-
est” element containing e. Note that Definition 2 allows for
elements to have multiple parents. However, to simplify the
implementation, we use a simple metric (i.e., the area) to
associate each element with at most one parent.

Definition 3 (Sibling nodes): Given a set of elements Ds

from a web page. two elements e1, e2 ∈ Ds are said to be
siblings if and only if they have a common parent in Ds.

Parent-child and sibling relationships can be further qual-
ified with attributes specifying the relative position of the
elements with respect to each other. For example, a child could
be horizontally left-, right-, or center-justified and vertically
top-, bottom-, or center-justified within its parent. Similarly,
an element e1 could be above, below, or to the left or right
of its sibling element e2. Further, e1 and e2 could be aligned
with respect to their top, bottom, left, or right edges. These

body
header

menu

hr1

main

hr2

footer

link1

link2

subHeading

countText

paperList
paper1

paper2

paper3

paper4

button1

button2

above

above

above

above

above

leftOf

above

above

above
left-align
right-align

above
left-align
right-align

above
left-align
right-align

above
left-align
right-align

leftOf
top-align

bottom-align

Fig. 3. Alignment Graph for the web pages in Figure 2.

attributes can be simply computed by comparing the x and y
coordinates of the elements in question.

Formally, an alignment graph A is a directed graph defined
by the 5-tuple (E,R, T , Q,F). Here, E is the set of vertices,
one for each web page element. R ⊆ E × E is a set of
directed relationship edges, such that for elements e1, e2 ∈ E,
there exists an edge (e1, e2) in A if and only if either e1 is a
parent of e2, or e1 and e2 are siblings. (Although the sibling
relation is symmetric, in practice only one of the edges (e1, e2)
and (e2, e1) is sufficient to represent it, so we can arbitrarily
choose one.) T is a set of the two types {parent, sibling}
for identifying an edge as a parent or a sibling edge. Q is a
set of attributes (e.g., left-align, center-align, above, leftOf)
used to positionally qualify the parent or sibling relationship.
F : R 7→ T × 2Q is a function that maps edges to their type
and set of attributes.

Figure 3 shows the alignment graph for the web pages
shown in Figure 2, where some sibling edges and edge
attributes have been omitted to avoid cluttering. In the figure,
parent edges are represented with black, solid lines, and sibling
edges with red, dashed lines. Node labels indicate the ele-
ment they represent. Nodes button1 and button2, for instance,
represent menu buttons HOME and DATES, respectively, and
header, footer, and main represent the page header, footer,
and the main content-bearing section (showing the accepted
papers), respectively. The graph is identical for the web pages
in Figures 2a (FF) and 2b (IE), except for the sibling edge

Algorithm 2: ExtractAlignmentGraph
Input : W : Web page to analyze, Br: Web browser
Output: A: Alignment Graph

1 begin
2 D ← extractDOM (W,Br)
3 L ← extractLayout(W,Br)
4 Df ← filterDOM (D)
5 foreach e ∈ Df do addNode(e,A)
6
7 addParentEdges(A,L, Df)
8 addSiblingEdges(A)
9 foreach (v1, v2) ∈ parentEdges(A) do

10 addParentChildAttributes(A,L)
11 end
12 foreach (v1, v2) ∈ siblingEdges(A) do
13 addSiblingAttributes(A,L)
14 end
15 return A
16 end

between the nodes button1 and button2, which is represented
as a dotted blue line for IE and as a red line for FF.

B. Extracting the Alignment Graph
Algorithm 2 describes our approach for extracting the

Alignment Graph A of a target web page W with respect
to a web browser Br. The algorithm first extracts the DOM
D of W (Br) (extractDOM (), line 2) and the layout L
of W (Br) (extractLayout(), line 3). Function filterDOM ()
then reduces D to Df by pruning away DOM elements
that have no bearing on the visible layout of the page (e.g.,
<a>). Line 5 adds one vertex to A for each element in Df .
Layout L is then analyzed to deduce parent-child relationships
between elements in Df and insert parent edges between the
corresponding vertices in A. This is implemented by function
addParentEdges() (line 6) and, similarly, for sibling edges
by function addSiblingEdges() (line 7). The layout of each
parent-child element pair is further analyzed to infer alignment
attributes qualifying this relationship, which are then added to
the relevant edge in A (lines 8 − 10). This is similarly done
for sibling edges through function addSiblingAttributes()
(lines 11− 13).

Algorithm 3 computes the parent-child relationships among
the nodes in Df and inserts edges representing them into A.
First, the algorithm inserts the elements of Df into a list E
(function getListOfElements(), line 2). Then, list E is sorted
using a compare function g (line 3) that satisfies the following
property:

Property 1: For a pair of elements e1, e2 ∈ Df , if e1 ≺ e2
then g(e1, e2) = −1.

Finally, the algorithm iteratively removes the last element
e from the sorted list E (line 5). It then scans E from left to
right, while comparing e with each element, until it finds an
element p such that p ≺ e (function contains(), line 8). From
Property 1 of the sorted list E, p can be inferred to be the
parent of e, so the algorithm adds a parent edge (p, e) to A
(function insertParentEdge(), line 9).

It is fairly straightforward to prove that, given a compare
function g satisfying Property 1, Algorithm 3 finds precisely
one parent element, consistent with Definition 2, for each

Algorithm 3: addParentEdges
Input : A: Alignment Graph being built, L: Layout of web page,

Df : Filtered DOM of web page

1 begin
2 E ← getListOfElements(Df)
3 sort(E, g) // Sort E using compare function g
4 while size(E) > 1 do
5 e← removeLastElement(E)
6 for index← size(E) to 1 do
7 p← getElement(E, index)
8 if contains(p, e,L) then
9 insertParentEdge(A, p, e,L)

10 break
11 end
12 end
13 end
14 end

element in set Df that has a parent, and adds a parent
edge to A accordingly. Note that there are many possible
compare functions g that satisfy Property 1. In our current
implementation, we use a function that orders elements based
on their geometric area and XPath.

C. Comparing Alignment Graphs
After extracting alignment graphs A1 and A2 for W (Br1)

and W (Br2), respectively, our technique checks the two
graphs for equivalence; any difference found constitutes a
relative-layout XBI. To do so, the technique uses the DOM
matching approach we discussed in Section V-B, which can
determine corresponding elements in W (Br1) and W (Br2),
and consequently, corresponding vertices in A1 and A2. Given
a node e ∈ A1 (resp., A2), let m(e) denote its corresponding
node in A2 (resp., A1) as computed by our matching approach.
Next, our technique iterates over each edge r = (e1, e2) in A1

and checks that the corresponding edge r′ = (m(e1),m(e2))
exists in A2. It further checks that these edges have identical
labels, that is, F1(r) ≡ F2(r

′). This check ensures that r and
r′ are of the same type and have an identical set of attributes.
Any discrepancies in the edge correspondence is recorded as
an error. The process is repeated in a similar way for A2.
Each XBI is detected and reported in the form of differences
in the “neighborhood” of a given element and its counterpart
in the two alignment graphs. The neighborhood refers to the
parent and siblings of the element, and to the edges between
them. For example, in Figure 3, the comparison would yield a
single XBI on button1 caused by attribute differences between
the button1→ button2 sibling edges in FF and IE. In FF, the
edge indicates that (1) button1 is to the left of button2 and (2)
the top and bottom edges of button1 and button2 are aligned.
For IE, conversely, the dashed blue sibling edge indicates that
button1 is above button2, and the left and right edges of the
two buttons are aligned. This is indeed the only layout XBI
between the web pages in Figures 2a and 2b.

VII. IMPLEMENTATION

We implemented our approach in a prototype tool called X-
PERT (Cross-Platform Error ReporTer), which is implemented
in Java and consists of three modules: Model collector, Model
comparator, and Report generator (Figure 4). Module Model

collector, accepts a web application and extracts its navigation
model from multiple browsers using an existing web crawler,
CRAWLJAX [11]. CRAWLJAX acts as a driver and, by trig-
gering actions on web page elements, is able to explore a
finite state space of the web application and save the model
as a state-graph representation. For each state (i.e., page),
Model collector also extracts an image of the entire page and
geometrical information about the page elements by querying
the DOM API.

Module Model comparator (MC) performs the checks
needed to identify the different classes of XBIs defined in Sec-
tion IV. First, the Behavior checker detects behavior XBIs by
checking the state-graphs for the two browsers. Then, it passes
the equivalent states from the two graphs to the DOM matcher,
which matches corresponding DOM elements in these states.
These matched elements are then checked for structural and
content XBIs by the Layout checker and Content checker. The
Layout checker implements the new relative-layout detection
algorithm described in Section VI. Each element on the page
is represented as a layout node, and its edge relationships are
inferred using the geometric information captured earlier. To
find differences in the neighborhood of matched nodes in two
alignment graphs, X-PERT checks the nodes’ incoming and
outgoing edges, along with the corresponding edge attributes.
Any discrepancy observed is attributed to the elements being
compared. The Content checker compares both the textual and
visual content of leaf DOM elements on the page. X-PERT
performs textual comparison using string operations defined in
the Apache Commons Lang library (http://commons.apache.org/
proper/commons-lang/). To compare visual content, X-PERT uses
the implementation of the χ2 metric in the OpenCV computer
vision toolkit [12].

Finally, the Report generator module generates an XBI
report in HTML format, meant for the web developer, using
the Apache Velocity library (http://velocity.apache.org/). These
reports first present the behavioral XBIs, overlaid on a graph,
to depict missing transitions or states, if any. A list of XBIs
is presented along with the pages where they appear. The user
can select a particular page to see an instance of the XBI.
These instances are identified using the XPaths and screen
coordinates of the elements involved and also highlighted on
two side-by-side screenshots of the affected page.

VIII. EVALUATION

To assess the effectiveness of our technique for detecting
XBIs, we used X-PERT to conduct a thorough empirical eval-
uation on a suite of live web applications. In our evaluation,
we investigated the following research questions:

RQ1: Can X-PERT find XBIs in real web applications?
If so, was the new relative-layout XBI detection
algorithm effective in detecting the targeted issues?

RQ2: How does X-PERT’s ability to identify XBIs compare
to that of a state-of-the-art technique?

In the rest of this section, we present the subject programs
we used for our evaluation, our experimental protocol, our
results, and a discussion of these results.

Report
Generator

Behavior
Checker

DOM
Matcher

Layout
Checker

Content
Checker

XBI
Report

Web
Application

Model Comparator

Model
Collector

...

Crawler

Fig. 4. High-level architecture of X-PERT.

A. Subject Programs
Table II shows the fourteen subjects we used in our evalu-

ation. Along with the name, URL, and type of each subject,
the table reports the following information: number of states
explored by X-PERT, number of transitions between these
states, and minimum, maximum, and average number of DOM
nodes analyzed per web page. (This latter information provides
an indication of the complexity of the individual pages.)

The first six subjects (i.e., Organizer, GrantaBooks, Design-
Trust, DivineLife, SaiBaba, and Breakaway) had been previ-
ously used in the evaluation of CROSSCHECK. In addition, Or-
ganizer was also used for evaluating CROSST [2]. Conference
is our motivating example from Section II and was developed
to show different classes of XBIs in a web application.
The following three subjects—Fisherman, Valleyforge, and
UniMelb—were obtained from the study of real world XBIs
presented in Section IV. The main criteria for picking these
subjects was the presence of known XBIs found in the study.
All of the subjects mentioned so far had known XBIs, some of
which were detected by previous techniques. To further gener-
alize our evaluation, we selected four additional subjects using
an online random URL service—http://www.uroulette.com/. (We
used this alternative service because the Yahoo! service we
used in the study was discontinued.) These additional subjects
are Konqueror, a web-based file manager, UBC, a student
organization site, BMVBS, a mobile web application for the
German ministry, and StarWars, a fan site.

B. Protocol
For our experiments, we set up X-PERT on a 64-bit Win-

dows 7 machine with 4GB memory. X-PERT was configured
to run two web browsers: the latest stable versions of Internet
Explorer (v9.0.9) and Mozilla Firefox (v14.0.1). Our choice
of these two browsers was due to their use in previous studies.
In fact, the chosen browsers do not have any bearing on the
technique and can be replaced with any browser of choice.
Two subjects, Organizer and Conference, were hosted on a
local Apache web server, whereas the remaining subjects were
used live from their actual web sites. Note that we do not
report any data on the performance of the tool because the
whole analysis, including crawling, terminated in less than an
hour.

To investigate RQ2, as a tool representative of the state
of the art we selected CROSSCHECK [6]. Unlike X-PERT,
CROSSCHECK does not combine XBIs across different web
pages, thereby having the same XBIs possibly reported mul-
tiple times. Therefore, to perform a fair comparison, we
implemented such a grouping on top of CROSSCHECK. We

http://commons.apache.org/proper/commons-lang/
http://commons.apache.org/proper/commons-lang/
http://velocity.apache.org/
http://www.uroulette.com/

TABLE II
DETAILS OF THE SUBJECTS USED IN OUR EMPIRICAL EVALUATION.

Name URL Type States Transitions DOM Nodes (per page)
max min average

Organizer http://localhost/organizer Productivity 13 99 10001 27482 13051
GrantaBooks http://grantabooks.com Publisher 9 8 15625 37800 25852
DesignTrust http://designtrust.org Business 10 20 7772 26437 18694
DivineLife http://sivanandaonline.org Spiritual 10 9 9082 140611 49886
SaiBaba http://shrisaibabasansthan.org Religious 13 20 524 42606 12162
Breakaway http://breakaway-adventures.com Sport 19 18 8191 45148 13059
Conference http://localhost/conference Information 3 12 878 817 853
Fisherman http://fishermanslodge.co.uk Restaurant 15 17 39146 15720 21336
Valleyforge http://valleyforgeinn.net Lodge 4 12 5416 4733 5046
UniMelb http://www.economics.unimelb.edu.au/ACT/ University 9 8 15142 12131 13792
Konqueror http://www.konqueror.org Software 5 4 17586 15468 16187
UBC http://www.ubcsororities.com Club 7 7 20610 7834 12094
BMVBS http://m.bmvbs.de Ministry 5 20 19490 12544 15695
StarWars http://www.starwarsholidayspecial.com Movie 10 9 28452 19719 22626

call this improved version CROSSCHECK+ in the rest of the
paper. The reports generated by these tools were manually
inspected to find true and false positives. In addition, we
manually analyzed the web pages analyzed by the tools to
count all issues potentially detectable by a human user, which
we use as an upper bound for the number of issues that a tool
can detect. We use this number to calculate the recall of the
results produced by the two tools.

C. Results
To answer RQ1, Table III(a) presents a detailed view of

X-PERT’s results when run on the 14 subjects considered.
The table shows, for each subject, the true and false positives
reported by X-PERT for each of the four types of XBI we
identified, along with an aggregate total. As the results show,
X-PERT reported 98 true XBIs and 31 false positives (76%
precision). The detected issues included all four types of XBIs,
with a prevalence of structure XBIs (60), followed by behavior
(33) and content (5) XBIs. Based on these results, we can
answer RQ1 and conclude that, for the subjects considered,
X-PERT was indeed effective in finding XBIs. We can also
observe that the new relative-layout XBI detection algorithm
was able catch most of the issues in our subjects.

Table III(b) summarizes and compares the results of X-PERT
and CROSSCHECK+, which allows us to answer RQ2. The
table shows, for each subject, its name, the number of XBIs
found by manual analysis (XBI), and the results of the two
tools in terms of true positives (TP), false positives (FP), recall
(Recall), and duplicate reports (Dup) produced. As the table
shows, X-PERT outperformed CROSSCHECK+ in terms of both
precision and recall for all of the subjects considered, and
often by a considerable margin. For subject DesignTrust, for
instance, X-PERT produced 3 false positives, as compared to
122 false positives produced by CROSSCHECK+. On average,
the precision and recall of X-PERT’s results were 76% and
95%, respectively, against 18% and 83% for CROSSCHECK+.
Our results also show that the X-PERT reported a negligible
number of duplicate XBIs—only 1 versus the 52 duplicate
XBIs CROSSCHECK+ reported. We can therefore answer RQ2
and conclude that, for the cases considered, X-PERT does
improve over the state of the art.

IX. DISCUSSION

As our empirical results show, X-PERT provided better
results than a state-of-the-art tool. We attribute this improve-
ment, in large part, to our novel relative-layout detection
technique. From our study of real world XBIs, presented in
Section IV, it was clear that layout XBIs are the most common
class of XBIs. In previous approaches, such as WEBDIFF
or CROSSCHECK, these XBIs were detected indirectly, by
measuring side-effects of layout perturbations, such as changes
in the visual appearance or in the absolute size or position of
elements. However, as demonstrated by our results, detecting
side effects is unreliable and may result in a significant reduc-
tion in precision. In addition, a single XBI can have multiple
side effects, which when detected by previous techniques
would result in duplicate error reports.

One solution for eliminating duplication, used in previous
techniques, is to cluster related XBIs. However, clustering
can be imperfect, thereby including unrelated issues in one
cluster or separating related issues across multiple clusters.
Moreover, developers still need to manually sift through the
errors in a cluster to find the underlying cause of the XBI
and related side effects. To alleviate this problem, X-PERT
focuses each differencing technique (i.e., visual comparison,
text comparison, and layout differencing) where it can be most
effective at detecting XBIs. By focusing the techniques on
very specific problems, each XBI can be detected in terms of
its principal cause, rather its side effects, which can be used
to provide a better explanation of the XBI to the developers.
In addition, we observed that such focused orchestration can
detect more errors, which explains the improvement in the
recall of the overall approach.

Another potential advantage of X-PERT is that it separates
the individual techniques into different components, unlike
previous approaches. Although we did not demonstrate this
aspect in our study, intuitively this separation could allow
developers to tune each of these components based on the
kind of web application under test. For instance, developers
could selectively use the behavioral detector, if such issues are
more common in their web applications, or could turn it off
to focus on other kinds of XBIs.

TABLE III
EMPIRICAL EVALUATION RESULTS.

NAME BEHAV. STRUCT. CONTENT TOTALTEXT IMAGE
TP FP TP FP TP FP TP FP TP FP

Organizer 1 0 9 0 0 0 0 0 10 0
GrantaBooks 16 0 11 0 0 0 0 0 27 0
DesignTrust 2 0 5 3 0 0 0 0 7 3
DivineLife 7 0 3 6 1 0 0 0 11 6
SaiBaba 2 0 2 9 0 0 0 0 4 9
Breakaway 0 0 10 2 0 0 0 0 10 2
Conference 2 0 3 0 1 0 1 0 7 0
Fisherman 1 0 3 1 0 1 1 0 5 2
Valleyforge 0 0 2 2 0 0 1 0 3 2
UniMelb 2 0 0 0 0 0 0 1 2 1
Konqueror 0 0 0 0 0 0 0 6 0 6
UBC 0 0 0 0 0 0 0 0 0 0
BMVBS 0 0 0 0 0 0 0 0 0 0
StarWars 0 0 12 0 0 0 0 0 12 0
TOTAL 33 0 60 23 2 1 3 7 98 31

(a) X-PERT’s detailed results.

NAME XBI X-PERT CROSSCHECK+
TP FP Recall Dup TP FP Recall Dup

Organizer 10 10 0 100% 0 8 2 80% 13
GrantaBooks 27 27 0 100% 0 27 1 100% 0
DesignTrust 7 7 3 100% 0 6 122 86% 3
DivineLife 11 11 6 100% 0 10 24 91% 3
SaiBaba 5 4 9 80% 0 4 53 80% 10
Breakaway 13 10 2 77% 1 7 49 54% 12
Conference 7 7 0 100% 0 7 0 100% 0
Fisherman 5 5 2 100% 0 4 5 80% 8
Valleyforge 3 3 2 100% 0 1 1 33% 0
UniMelb 2 2 1 100% 0 2 27 100% 0
Konqueror 0 0 6 100% 0 0 11 100% 0
UBC 0 0 0 100% 0 0 1 100% 0
BMVBS 1 0 0 0% 0 0 2 0% 0
StarWars 12 12 0 100% 0 10 91 83% 3
TOTAL 103 98 31 95% 1 86 389 83% 52

(b) X-PERT’s results compared to those of a state-of-the-art technique.

X. THREATS TO VALIDITY

As with most empirical studies, there are some threats
to the validity of our results. In terms of external validity,
in particular, our results might not generalize to other web
applications and XBIs. To minimize this threat, in our study,
we used a mix of randomly selected real-world web applica-
tions and applications used in previous studies. The specific
browsers used in the evaluation should not have affected the
results, as our technique does not rely on browser specific logic
and operates on DOM representations, which are generally
available. Thus, we expect the technique to perform similarly
on other browsers.

Threats to construct validity might be due to implementa-
tion errors in X-PERT and in the underlying infrastructure—
especially with respect to the integration with the browser to
extract DOM data. We mitigated this threat through extensive
manual inspection of our results.

XI. CONCLUSION AND FUTURE WORK

Because of the richness and diversity of today’s web
platforms, XBIs are a prominent issue for web application
developers. To address this issue, in this paper, we presented
an automated approach that can accurately detect XBIs in web
applications. The definition of our approach was guided by our
findings in a systematic study of real-world XBIs in a large
number of web applications. To target different types of XBIs,
our approach integrates three existing techniques with a novel
relative-layout XBI detection algorithm. Most importantly, the
approach applies different techniques to different aspects of
a web application, which allows it to maximize the overall
effectiveness of the approach. We implemented our approach
in a tool, called X-PERT, and used the tool to perform an exten-
sive empirical evaluation on a set of real world applications.
Our results show that X-PERT can identify XBIs accurately
(76% precision) and effectively (95% recall), and that it can
outperform a state-of-the-art technique.

One possible direction for future work is to investigate
techniques that can automatically eliminate the XBIs identified
by our approach through browser-specific automated web page

repairs. Another possible direction is the identification of
cross-platform incompatibilities for those (increasingly com-
mon) applications that are developed in different variants
(e.g., desktop, web, and mobile variants) and should behave
consistently across variants.

ACKNOWLEDGMENTS

This work was supported in part by NSF awards CCF-
1161821, CNS-1117167, and CCF-0964647 to Georgia Tech,
and by funding from IBM Research and Microsoft Research.

REFERENCES

[1] Stackoverflow, http://data.stackexchange.com/stackoverflow/query/
77488/posts-for-cross-browser-issues, August 2012.

[2] A. Mesbah and M. R. Prasad, “Automated cross-browser compatibility
testing,” in Proceeding of the 33rd International Conference on Software
Engineering (ICSE). ACM, May 2011, pp. 561–570.

[3] C. Chapman, “Review of cross-browser testing tools.”
http://www.smashingmagazine.com/2011/08/07/a-dozen-cross-browser-
testing-tools/, August 2011.

[4] I. Safairis, “15 useful tools for cross browser compatibility
test.” http://wptidbits.com/webs/15-useful-tools-for-cross-browser-
compatibility-test/, March 2011.

[5] S. Roy Choudhary, H. Versee, and A. Orso, “WebDiff: Automated
identification of cross-browser issues in web applications,” in Proceeding
of the 2010 IEEE International Conference on Software Maintenance
(ICSM). IEEE, September 2010, pp. 1–10.

[6] S. Roy Choudhary, M. R. Prasad, and A. Orso, “Crosscheck: Combining
crawling and differencing to better detect cross-browser incompatibilities
in web applications,” in Proceedings of the IEEE Fifth International
Conference on Software Testing, Verification, and Validation (ICST).
IEEE, April 2012, pp. 171–180.

[7] V. Dallmeier, M. Burger, T. Orth, and A. Zeller, “Webmate: a tool
for testing web 2.0 applications,” in Proceedings of the Workshop on
JavaScript Tools (JSTools). ACM, June 2012, pp. 11–15.

[8] Browserbite, “Cross browser testing with computer vision,” http://app.
browserbite.com/.

[9] C. Eaton and A. M. Memon, “An empirical approach to evaluating web
application compliance across diverse client platform configurations,”
International Journal of Web Engineering and Technology, vol. 3, no. 3,
pp. 227–253, January 2007.

[10] M. Tamm, “Fighting layout bugs,” http://code.google.com/p/fighting-
layout-bugs/, October 2009.

[11] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling ajax-based web
applications through dynamic analysis of user interface state changes,”
ACM Transactions on the Web, vol. 6, no. 1, pp. 3:1–3:30, March 2012.

[12] G. Bradski and A. Kaehler, Learning OpenCV. O’Reilly Media,
September 2008.

http://data.stackexchange.com/stackoverflow/query/77488/posts-for-cross-browser-issues
http://data.stackexchange.com/stackoverflow/query/77488/posts-for-cross-browser-issues
http://www.smashingmagazine.com/2011/08/07/a-dozen-cross-browser-testing-tools/
http://www.smashingmagazine.com/2011/08/07/a-dozen-cross-browser-testing-tools/
http://wptidbits.com/webs/15-useful-tools-for-cross-browser-compatibility-test/
http://wptidbits.com/webs/15-useful-tools-for-cross-browser-compatibility-test/
http://app.browserbite.com/
http://app.browserbite.com/
http://code.google.com/p/fighting-layout-bugs/
http://code.google.com/p/fighting-layout-bugs/

	Introduction
	Motivating Example
	Related Work
	Generation 0: Developer Tool Support
	Generation I: Tests on a Single Browser
	Generation II: Multi-Platform Behavior & Test Emulation
	Generation III: Crawl-and-Compare Approaches

	Study of Real-World XBIs
	A Comprehensive Approach to XBI Detection
	Terminology
	Framework for XBI Detection

	Detecting Relative-Layout XBIs
	The Alignment Graph
	Extracting the Alignment Graph
	Comparing Alignment Graphs

	Implementation
	Evaluation
	Subject Programs
	Protocol
	Results

	Discussion
	Threats to Validity
	Conclusion and Future Work
	References

